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UNCERTAINTY AND SENSITIVITY ANALYSIS IN THE PRESENCE OF
STOCHASTIC AND SUBJECTIVE UNCERTAINTY

Jon C. Helton
Department of Mathematics
Arizona State University
Tempe, AZ 85287-1804 USA

ABSTRACT

An assessment of the effects of uncertainty is widely recognized as an essential part
of most analyses. Such assessments are typically subdivided into the related areas
of uncertainty analysis and sensitivity analysis, where uncertainty analysis involves
determining the uncertainty in model predictions that results from imprecisely known
analysis inputs and sensitivity analysis involves determining the contribution of
individual analysis inputs to the uncertainty in model predictions.

When viewed formally, many analyses consist of the following components:

X = a vector of inputs to the analysis, (1)
F = a function of x, (2)
(S, 3, 1) = a probability space that characterizes the uncertainty in x. (3)

In this context, uncertainty analysis involves the determination of the complementary
cumulative distribution function (CCDF) that derives from F and (S, 4, u), and
sensitivity analysis involves the determination of the contribution of the individual
components of x to the uncertainty characterized by this CCDF.

In concept, uncertainty analysis is straight forward as it simply involves evaluation of
the integral

prob (r>R) = JSSR[F(X)] p(x) dV (4)
where
1if r >R
= 5
¥ () {OierR )

p(x) = density function for (S, 4, p) (6)
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and prob (r > R) is the probability that the function (i.e., model) F will yield a
prediction greater than R. Once evaluated, the preceding integral provides a
complete characterization of the uncertainty in F. In practice, this evaluation is not
simple at all as x is often of high dimension and F can be very complicated (e.g., a
computer program consisting of 10° or more lines of FORTRAN).

A number of uncertainty analysis techniques have been developed to provide
approximations to the information associated with the integral in Eq. (4), including
differential analysis, the fast probability integral, the Fourier amplitude sensitivity test
(FAST), Monte Carlo analysis, and response surface methodology (RSM). Each of
the preceding procedures for approximating the integral in Eq. (4) also has
associated measures of sensitivity. For example, sensitivity can be defined by
fractional contribution to variance (differential analysis, FAST, Monte Carlo, RSM),
regression models relating F(x) to x (Monte Carlo, RSM), correlation analysis
(Monte Carlo, RSM) and pattern identification (Monte Carlo). More complex
procedures based on determination of the total impact of individual elements of x on
F(x) are also possible.

The focus of this presentation is analysis problems in which the probability space (S,
4, 1) in Eq. (3) is built up from two distinct probability spaces (S;, 41, it1) and (S, 4,
U2). Then S =Sy xS,, 4=45; x4, and y characterizes the probabilistic relationships
between Sy and S,. As an example, problems of this type often arise in performance
assessments for complex systems, where one probability space is used to represent
the possible occurrences that could take place in the system under study (i.e.,
stochastic or aleatory uncertainty), and the other probability space is used to
represent uncertainty in the appropriate values of parameters to use in the
computational implementation of the analysis (i.e., subjective or epistemic
uncertainty).

When an element of one probability space is fixed (e.g., x, € S;), then a CCDF
results that characterizes the uncertainty in F due to the possible values that x; € S;
can take on. Such CCDFs are defined by integrals of the form

prob (r > R1x%y) = JS, 8 g[F(x1.%2)] p (x11%) aW, %)

where
p(xllxz):p(x]vxz)/‘l’S P(xl»xz)dvl (8)
p(x,,X,) = density function for (S, 3, p), S =5y xS 9)

and prob (r > R | X,) is the probability that F yields a prediction greater than R
conditional on the element x, of S,.
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Three interrelated questions arise in uncertainty and sensitivity analyses that involve
a product space (S, 3, pt) derived from two distinct probability spaces (S, 41, yt1) and
(Sa2, 42, H2): How to estimate the individual CCDFs defined by the integrals in Eq.
(7)?, How to estimate the distribution of CCDFs defined by the integrals in Eq. (7)?,
and How to define and calculate quantities that relate the uncertainty characterized
by the distribution of CCDFs to the uncertainty characterized by (Sa, 42, po).

The preceding questions will be discussed in the context of recent performance
assessments for reactor accident consequences and radioactive waste disposal.
The applicability of various uncertainty and sensitivity analysis techniques will be
considered and the analysis procedures selected for use will be described.
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The Sensitivity of Models of Groundwater Flow to Conceptual Model
Uncertainty and its Importance in Radionuclide Transport Problems

D. A. Zimmerman, GRAM, Inc., Albuquerque, NM, USA
Ghislain de Marsily, University of Paris, Paris, France
Steven Gorelick, Stanford University, Palo Alto, USA

M. G. Marietta and Carl Axness, Sandia National Laboratories,
Albuquerque, NM, USA

In classical sensitivity analyses, the objective is to evaluate the influence of uncertain
input parameters on the model output for the purpose of acertaining which are the
more important parameters. In this study, we develop a novel application of classical
sensitivity analysis procedures for the purpose of identifying which methods or
modeling approaches are better suited for solving a problem which is plagued by
conceptual model uncertainty. The interest of this approach is that it recognizes the
importance of conceptual model uncertainties beyond model parameter uncertainties,
and because it enables the relative importance of these two sources of uncertainty to
be assessed.

The setting for this study is the Waste Isolation Pilot Plant (WIPP) site in southeastern
New Mexico, USA, where disposal of radioactive wastes from defense programs of the
U.S. Department of Energy (DOE) is being considered in a deep geological salt
formation. Large uncertainties in the hydrogeologic flow regimes in the aquifer
overlying the proposed repository lead to several plausible but conceptually very
different models of important hydrogeologic properties in the aquifer in which the
transport of radionuclides is of concern. Hence, the uncertainty in the spatial variability
of the aquifer's log-transmissivity distribution can not be completely characterized via
parameter uncertainty alone. A significant proportion of the uncertainty in the model
output is due to the variation in the aquifer's characteristics as represented by different
conceptual models of inferred hydrogeologic features. Thus, while different
conceptual models do not have assigned values in the same way that model
parameters range over different values, the sensitivity analysis nonetheless allows us
to assess the importance of considering alternative sets of assumptions regarding the
hydrogeology of the system.

Several state-of-the-art geostatistical inverse methods associated with these different
conceptual models are currently being considered for possible use as
performance-assessment tools as part of the effort to evaluate the potential of the
WIPP site to comply with regulations governing the release of radionuclides into the
environment from such facilities. In this exercise, we develop and utilize several
“synthetic sites" (numerical analogs to the real site) to examine the effect that different
conceptual model assumptions and parameter distributions of the mathematical model
have on both the accuracy and the precision of the model predictions. Our objective
is to evaluate the predictive capacity of different conceptual models once they have
been calibrated to the sample data from the synthetic sites. Seven different
conceptual models are compared. The presentation will emphasize the degree to
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which the different conceptual models are able to cope with “synthetic sites" which
do not necessarily meet the simplyfing assumptions of the conceptual models and will
compare the robustness of these models.
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SAMPLING METHODS AND SENSITIVITY ANALYSIS
FOR LARGE PARAMETER SETS

T.H. Andres (andrest@wl.aecl.ca)
AECL Whiteshell Laboratories, Pinawa, Canada ROE 1L0

Many scientific modelling exercises produce a computer program to evaluate a scalar
function f(x), where x = (xq, ... , Xp) is a vector of parameter values. (Without loss of
generality, assume each x; comes from the interval [0,1].) For example, in risk
assessment studies, f may be a measure of environmental impact or harm, and the
parameter vector x describes a possible state or series of states of a facility
corresponding to a future scenario. In most studies, the expected value of f (denoted
fo) and the dependence of fon each of the parameters are of interest.

Often only a few of the parameters and groupings of parameters have significant
impacts on £ When n is large (i.e., n>500) it is difficult to find the few important
parameters. Nevertheless, in (3) n ~ 3300 parameters were successfully screened for
their impact on the output of a model of a deep geological waste disposal concept. This
paper stems from that work. It describes an efficient sensitivity analysis (SA) procedure
designed to elicit as much information as possible about the parameter dependencies of
fbased on function values at specific points.

1. Criteria for a Good Sensitivity Analysis Procedure

Formally, the purpose of an SA study is to characterize the variability of fas it is affected
by variations of parameters in x. Informally, the modeller's goal is to simplify his/her
understanding of the model. The modeller wants to be able to explain an observed
value of fby referring to values of a designated subset of the parameters.

The first step in reaching this goal is screening: i.e., to identify a parameter subset that
controls most of the variability of £ This step is not always feasible. For example, if ,
and all x; vary similarly, the function depends on all parameters equally, and no
simplification is possible. A good SA procedure should work with "typical" applications.
It should let the modeller know when it works and when it does not. In addition, it
should:

<Reliably rank parameter effects.

*Produce repeatable results using the same procedure but different data sets.
*Minimize cost: the number of function evaluations needed should be much less
than the number of parameters when nis large and few effects are important.
*Detect sensitivity across the entire domain of each parameter.

*Provide useful estimates of fy, and of parameter influences.

2. Choosing Parameters for Sensitivity Analysis

The following variable types should be considered for parameters in an SA study,
though only those in the first two categories are traditional parameters. When the
number of parameters is already large, additional parameters do not complicate the
study overmuch.
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3.

*Continuous parameters. Each domain (finite or infinite) should be transformed to
the interval [0,1] for comparability. When the cumulative distribution function (cdf)
P\{y) is known for a parameter y, it provides a suitable invertible transformation (3).
-ﬁé&m;zammmﬂs that take qualitatively different discrete values.
*Constant parameters. Constants provide control variables. Any constant found to
be important by screening indicates that the analysis has reached its resolution
limits.
*Model controls (e.g., the number of time steps used in a simulation). These hidden
variables can affect results. SA can estimate the magnitude of their influence.
-Artificial variables. Suppose f(x) is the sum of several functions (e.g., pathways) g,;(]
(1)

where the bj’s are artificial variables. Each bj normally takes the constant value 0.5
to leave funchanged. In SA studies, b;can vary from 0 to 1, acting like a valve that
turns g](x) off or on. Treated as parameters, the b/s make it possible to assess the
importance, not just of individual parameters, but o{ whole sections of a model.

Preparation of Sample Sets

Many options are available in setting up a sample set for screening analysis (3). The
iterated fractional factorial design (IFFD) method used in (1) combines them all (3).

4.

«Stratification. Balanced sampling from distinct levels (strata) allows the analyst to
decompose output variance into two parts: that due to differences between levels,
and that due to variation within levels. Latin hypercube sampling stratifies each
parameter independently. Fractional factorial designs can balance sampling from
discrete levels for two or three parameters.

«Discretization. By restricting a stratified sample to one value for each stratum,
variation within parameter levels is eliminated. Some important variation may be
missed, however.

*Orthogonalization. Orthogonal samples isolate the effects of individual parameters
by avoiding inadvertent correlations with important parameters. Simple random and
latin hypercube samples can be modified to reduce inadvertent rank correlations
(). Fractional factorial samples can be made orthogonal by design.

*Grouping. Each parameter in a group gets the same sequence of values in a
subset of simulations. Suitable groupings can induce intended correlations of 1 and
-1 between parameters, which can help to distinguish parameter effects.

Folding. Pair every simulation with parameter values (x1, ..., xp) with a simulation

with parameter values (1-xq, ..., 1-xp). The analyst can then distinguish between
linear effects of individual parameters and effects of 2-way interactions.
*Replication.  Important parameters exhibit self-reinforcing effects in most

replicates. Unimportant parameters may appear significant in individual replicates,
but spurious effects cancel out. Replicates give ad hoc estimates of statistical
variation.

Analysis of Results

The formulation above treats only one function f{(x), but it is more informative to analyze
multiple independent output variables f{x). There is an optimal number of output
variables: fewer would yield less information, and more would cost too much to analyze.



Monday 25 September 1995 8

Saltelli et al. (4) assessed many SA techniques on two specific models and found
comparable results for different methods. They showed, however, that rank analyses
(where the result of the Kth simulation is replaced by its rank) are more repeatable than
those based on f](x) values. Other transformations of output variables can also improve
analysis results. Linear models should be analyzed on a linear scale, whereas
multiplicative models yield more information when log f,(x) is analyzed. Power
transformations give intermediate results.

5. Evaluation of Results

To evaluate a parameter screening (i.e., a ranking of parameters in diminishing order of
their influence), two types of studies are recommended:

*To evaluate the effects of discretization, repeat the simulations with parameters not
discretized (not mapped to discrete values). Compare simulations in pairs, with and
without discretization; apply SA to differences in f(x) between pairs to identify
parameters whose discretization has the greatest impact.

+To evaluate the effectiveness of a screening, run three sets of simulations. In the
first set, vary all parameters using simple random sampling. In the second, use the
values from the first set for the important parameters, but hold all other parameters
constant at their central value. In the third, hold the important parameters
constanta at a central value, and reuse the values from the first set for the others.
In a successful screening, the variance of results in the second set should almost
equal that in the first; the variance in the third set should be negligible in
comparison.
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Statistical Approaches for the Exploratory Modeling of Large Complex
Models

by

Steve Bankes & Tom Lucas
RAND
1700 Main Street
Santa Monica, CA 90407
USA

INTRODUCTION

Highly detailed computer simulations have become a common tool for a wide variety
of research and analysis activities, including studies of global climate, economic
activity, and military effectiveness. Our focus is on the use of large military combat
models to support research; however, most of the ideas and methods are germane
to the use of large models in other analytic applications.

Combat is extremely complex, and hence combat models can be too. It is not
uncommon for combat models to contain many hundreds of thousands of lines of
computer code using several megabytes of input data. The mathematical model
implemented in the computer code effectively maps input variables X=(X1, ...,Xn) to
output measures Y=(Y1, ...,Ym). We will denote this as Y=h(X)+e, where h represents
the model and e represents the distribution of variation due to random numbers
generated by the model. In practice, the dimension of X may be in the thousands,
while h is highly nonlinear and discontinuous--and sometimes even chaotic, as brutally
demonstrated by Dewar, Gillogly, and Juncosa, (1991). The computer codes are
sufficiently complex that it often takes many hours to produce a single output. As a
consequence, it is rare one can obtain more than perhaps a few hundred samples
from the model. This challenging situation is further complicated by the fact that many
events in combat models have to be characterized with some degree of
randomness--that is, modeled using Monte Carlo methods. Typical examples include
detection and attrition processes. This requires that the analyst characterize results
statistically, rather than deterministically--which further burdens the sampling
requirements.

As if the above challenges were not sufficient, combat models, unlike the engineering
models used in CAD systems, can not be compared with actual outcomes. Indeed,
many combat models are used to reason about hypothetical futuristic systems. In
these cases there is typically uncertainty, or lack of knowledge, that implies there are
many models and parameter settings that might plausibly represent the systems of
interest. Thus, running a few best-estimate cases is a recipe for self deception.
Instead, credible reasoning requires that conclusions be based on inferences about
the entire ensemble of alternative plausible models and scenarios, as detailed in
Bankes (1993). The problem of analysis thus focuses on the sampling strategy of how
to select the limited number of computer experiments from the huge number that might
potentially be relevant in order to inform the question of interest.
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This paper introduces a novel approach to understanding how simulation models, that
may not reliably make quantitative predictions about the behavior of the natural
system, and for which a complete sensitivity analysis is impossible, can still be used
to support credible reasoning. This approach formalizes individual computational
experiments as samples from a space or ensemble of alternative model realizations.
Strategies for reasoning under uncertainty dictate a wider range of potential objectives
for the exploration of model space than is classically considered. Relative to this
formalism, we devise resource constrained sampling strategies that combine adaptive
search for models with special characteristics with a triage approach to designing
series of experiments utilizing mixtures of high resolution, screening, massive group
screening, and Monte Carlo designs. This method is illustrated on a large combat
model in a study of the effectiveness of information systems.

REASONING WITH LARGE NONPREDICTIVE MODELS

Despite all the difficulties above and uncertainties inherent in combat models,
decisions must be made, which may involve billions of dollars and put lives at risk.
Those in the communities that use high resolution simulations are faced with a
dilemma. While they may be convinced that such models can provide important
insights that support decision-making under uncertainty, the computational unfeasibility
of conducting a thorough sensitivity analysis as classically understood, exposes them
to significant danger of being misled by anomalous model results. The normal
approach is to ignore this risk and treat the model as predictive with known reasonable
sensitivities. Hence, due to processing constraints, the studies vary only a few of the,
believed a priori, key variables--while holding the remaining thousands of variables
constant; however, inferences gleaned from the model are typically assumed to extend
off of the tiny hyperplane in model space examined.

An alternative approach, detailed in Bankes (1992) and Dewar et al., (1995) is to
consider the credibility of the combination of human argument and supporting
computational experiments. Credible patterns of argument to support decision-making
under uncertainty can allow constellations of computational experiments to be
informative, even though the models used cannot be considered to make credible
predictions of the behavior of the system of interest. Thus, instead of viewing models
as prediction engines, we view computational experiments as infrastructure to support
reasoning. Such experiments deduce implications of the posits required to specify a
particular experiment. Reasoning strategies outside of the models themselves provide
the context that make the outcomes of the modeling experiments salient. Thus, we
reason over an ensemble of carefully designed plausible cases, rather than, employ
a few samples presumed to be predictive.

A variety of reasoning strategies can be used to reason credibly in spite of large
uncertainties. For example, risk aversion can motivate a search for plausible worst
case scenarios, and the subsequent discovery of plausible disasters can credibly
assist the design of policy even though none of the models employed can be
demonstrated to predict system behavior. Similarly, the use of a fortiori arguments
can be used to discount the importance of some uncertainties, and result in an interest
in extreme rather than best estimate cases. As a general feature, such reasoning
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strategies are typically concerned with characterizing the qualitative behavior of
plausible system models rather thari developing quantitative predictions of system
behavior.

DESIGNING EXPERIMENTS FROM THE ENSEMBLE OF ALTERNATIVES

Given that one will reason over an ensemble of plausible runs constrained by time and
budget considerations, the goal of the experimental design is to select those cases
which will provide the most leverage in our research strategy. In detail, the DOE
includes selecting the specific model(s) and variable settings. The key is to link the
information needed from the multitude of variables, supplemented with expert
reasoning, to the information obtainable from various experimental designs. It is
assumed here that there are many more variables than samples available, as is
almost always the case with large combat models. It is also assumed that in the
regions of model space of interest some expertise exists and the number of causal
factors and interactions is manageable (if this is not true the model is too unstable to
draw general conclusions from inside of the constraints on computation).

Different designs are required for different classes of information. As part of a design
triage, we propose that the analysts partition the model's variables into classes
depending on their expertise and the information needed from varying the variables.
In general, there are those variables and interactions from which we are primarily
interested in or we think are causal; there are variables we believe are not significant,
but must screen for, and there are variables which we only want to assess general
model stability with respect to. Each of these classes implies a different class of
design. The designs trade-off the information obtainable with the samples required to
obtain it. For these different classes of information required we recommend
combinations of specific designs, ranging from high resolution factorial, to fractional
factorial, to main effects screening, to massive group screening, to random
perturbations. Guidance on how to implement the combinations within imposed
constraints is also provided.

This design philosophy allows a more comprehensive understanding of the model
space within constraints. Typically, the success of this approach relies heavily on the
ability of the experts to perform the design triage.

EXAMPLE

An example which shows how exploratory modeling and the design triage discussed
above can support decision-making will be provided in the full paper. Here exploratory
runs are made to determine plausible outcomes within the large land combat model
JANUS in support of developing tactics techniques and procedures to better utilize
new equipment.

CONCLUDING REMARKS

To avoid being fooled by our own models we need to rethink how we use very large
non-predictive models to help decision-making. Rather than relying on a few model
predictions, we need to support reasoning through carefully selected plausible model
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outcomes. Combinations of different classes of experimental designs should be
aggressively used to select the specific runs, or plausible cases, which efficiently
support decision-making in an uncertain environment. A complex design strategy,
which allows researchers variable levels of resolution, facilitates the estimation of
effects and various level interactions on the key variables, while simultaneously
screening other factors and assessing general model stability.
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SENSITIVITY ANALYSIS OF
DYNAMIC BUILDINGS ENERGY SIMULATION MODELS
USING GROUP SCREENING AND SAMPLING METHODS.

N. Rahni', N. Ramdani', Y. Candau’ & P. Dalicieux?.
ILETIEF - URA CNRS 1508,Univ. Paris Xll, F - 94000 Créteil. e-mail : rahni@univ-
paris12.fr
2Research Centre, Elecricité de France, ADEB, F - 77250 Moret-sur-Loing.

Introduction

For many years now, model output reliability and validity became topics of prime
importance in many fields [1], however, only too few works have already been
undertaken for buildings energy models.

Within the context of collaborations with Electricité de France (F) and the Building
Research Establishment (UK), the LETIEF laboratory has developed and tested tools
for modelling errors diagnosis by comparing model output with experimental data [2].
We are now interested in identifying the parameters to which model predictions are
most sensitive (sensitivity analysis) on the one hand, and in quantifying the propagation
of the uncertainty of these prevailing parameters (uncertainty analysis) on the other
hand.

This paper deals with the application of screening methods to the sensitivity analysis
of a building thermal model developed on CLIM2000, a software designed at the
Research Centre of Electricité de France at Les Renardiéres

The objective of this work is to exhibit the most influent parameters among the 390
used in the model, and then to show that output uncertainty can be accurately derived
using the uncertainty of these prominent parameters.

The building under analysis

The modelled building is the E.T.N.A. test cells, a real-size experimental building,
including two identical symmetrical cells, surrounded by fixed temperature volumes.
Extensive data acquisition and processing capabilities ‘are also provided.

During the experiment the south wall was submitted to actual climate conditions.
Thermal guards were maintained at constant temperature. The heating was switched
on during the last 3 days of the 6 days experiment.

The building components thermo-physical properties and geometrical dimensions
constitute model parameters. The nominal values used for these parameters came from
the literature. The relative error related to the previous was taken as 5%.

We analyse the model prediction of the indoor air temperature.
The techniques used for sensitivity analysis

Although classical screening methods are efficient for models with a small number of
parameters, they become unsuitable when this number reaches several hundreds.
Consequently, we apply the group screening method [3], which allows to consider a
great number of parameters. This method partitions the parameters into groups and
test whether these groups have a significant effect. Then, all parameters of the non
significant groups are eliminated and new groups are formed with the remaining
parameters. The procedure continues, until remaining parameters are few enough that
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we can apply classical designs.

The uncertainty analysis is then undertaken on the most influent parameters by
Monte Carlo methods by using SPOP/PREP statistical processor [4]. The confidence
interval thus derived is then compared with the one computed when using all the
parameters.

The parameters screening

At each stage of the screening investigations, we apply Placket and Burman designs
[5 1, which allow to assess the main effects of the different groups or factors, by use of a
small number of simulations (k+1 simulations for k factors). Such designs suppose
additive parameters effects, but since for the used parameters variations, interactions
are likely to be small, the previous hypothesis holds. The factors are then sorted with
the Lenth method [6].

After 4 stages (i.e. 136 simulations and 13,6h cpu time), 22 factors were selected
from the initial 390. Although the parameter sorting depends on time, the 22 most
influent factors are all related to the north wall, the floor and the south wall glazing.

- The north wall:

This wall is made of two plasterboards separated by an air gap. The pararheters
selected are the thermal conductivities, the thicknesses and the surfaces of the inner
plasterboard and of the air gap. The two surface exchange coefficients are also influent.

The investigation of these effects during the 6-days simulation shows that
conductivities, surfaces and surface exchange coefficients act in the same direction,
while thickness acts in an opposite way. These behaviours were expected regarding
conduction and convection flow equations.

On another hand, the magnitudes of these effects increase when the heater is
switched on. This can be explained by the fact that the heat flow over the north wall
raises as indoor air temperature raises while north guard temperature remains
controlled at 10°C.

- The floot:

The two first components of the floor (from inside to outside) are concrete slab and
insulator. The six parameters found important are the internal surface exchange
coefficient, the concrete thickness, surface, specific heat, and specific volume and the
insulation conductivity.

The exchange coefficient effect becomes significant when the heater is switched on.
Then it decreases rapidly while the heater is still on. This can be explained by the fact
that the inner air temperature raises before the floor surface temperature inducing a
large heat convective flow. When the surface temperature raises, the flow diminishes
and hence reduces this coefficient effect.

The insulation thermal conductivity is influent only during the heating period whereas
the concrete parameters effects vary with both solar radiation and heating excitations

- The Glazing :
The 8 influent factors are the glazing surface, conductivity , the diffuse flow

absorption and transmission coefficients, azimuth and tilt angle. The direct flow
transmission coefficients for 40° and 50° incidence angle are also influent.
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The glazing surface and tilt angle have large effects. Unlike the tilt angle and optical
glazing parameters effects, the surface and the conductivity effects are sensitive to
heater operation.

The Model output uncertainty band

In order to verify that the model
output global uncertainty is adequately
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§ ’*‘RL \ | 24 parameters described by the uncertainties of the
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Conclusion

The application of group screening methods to the sensitivity analysis of building
thermal models has demonstrated their efficiency to help sorting the parameters effects
with a small simulation cost when the model involves a large set of parameters.

During the configuration analysed, the effects derived was found related to the
magnitude of the heat exchanges between building components.
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When parameter uncertainty is being modeled by a probability distri-
bution one immediately incurs the curse of dimensionality - for example, 20
parameters in the model imply that (in principle) a probability distribution
in 20 dimensions has to be specified. Because of this problem it is neces-
sary to find and use simpler models without losing modeling effectiveness. In
this paper we investigate a joint probability distribution that can be used to
model a partially unknown distribution.

We consider the case of two random variables X and Y for which only
marginal distributions and a rank correlation coefficient are known. We pro-
pose to model the joint distribution in question by that joint distribution
which has maximal entropy (or equivalently, minimal information) among all
candidate distributions.

This principle has been applied in a number of practical situations, for
example in projects for the European Space Agency and the chemical com-
pany DSM, where probability distributions with maximal entropy have been
used in the analysis of the propagation of uncertainty of model parameters in
models trying to assess the risks of spacecraft and chemical plants.
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The relative information of X with respect to Z, for continuous r.v.’s with
densities fx (z), fz(y) is given by
fx(€)

I(fx|fz) = /‘Z log(7 ) I (@) (1)

(we assume that if z € Z then fz(z) > 0).

Suppose now that we wish to model a joint distribution for (X,Y) for
which we only have partial information, for example the marginals Fyx, Fy,
and the rank correlation p.(X,Y). We choose as model the distribution
having minimal relative information with respect to the uniform density on
the unit square among all distributions which satisfy the given information.

For notational convenience we consider continuous bivariate distributions
with density fx,y (z,y) supported on the shifted unit square 4 = (—3%,1] x
(=%, 3], having uniform marginals. Let F, be the subclass of all distributions
with uniform marginals and a correlation p, —1 < p < 1.

The distribution with density fx y € F, that has minimal relative inform-
ation I(fx,y|u) among all distributions in F, with respect to the uniform
distribution u, is a solution of the following optimization problem.

minimize / fxy(z,y)log( fxy(z,y))dedy
A

1
subject to 21 fxy(z,y)de=1 Yy € (_%‘ %] ,
-2
3 11
fry(@y)dy=1 Vo e€(-53]@)

o[-

/A sy fxy (@, y) dedy = po® ,  fxy(z,y)>0.

We stress that this problem is not a standard convex optimisation problem
as there are effectively an uncountable number of constraints. The problem
of entropy maximisation under a finite number of constraints has been much
studied in the literature.

The main result is

Theorem 1 The solution fxy(z,y) of (??) equals
Fxiy (2,y) = K(z, 0)s(y, 0) e (3)
where the coefficients B, ; of the Taylor series ezpansion

k(z,0) = i iﬂm,imzi()%‘ (4)

m=01=0
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are given by the recursive relation (7?)-(7?)

Boo = 1 (5)
1 m—1 k (2)2z+2]
. = — e =12, .
ﬂ’nl,’t (21)! 1\; j;oﬂk,] 27, + 2]. + 1 for 1 y &y ,m, a.nd (6)
m—1 i (l)?j
ﬁm,O = ﬁk,j 2 +
k=1 3=0 2‘7 + 1

1 m min(s,m—1) 1 (1)2111 25427
5; Z ((2m — 2s)1)2 Zﬂ 7 om — 2s+25+1

0 k=max(0,s—m+1)

s—k (?)Zm 25427
Bs- I om — 2s+27+1 ’ (™

7=0

The relation between 6 and p(X,Y) is given by p(0) = 12392, 6,6+ [and
the coefficients b, of this series are given by the following expression in the

Bhi-

. <_)25+3 , . .
SZ:(:) 2s+3 ,;{('28——2]\74-1)! X::o
—— ml( >2l+23 2k

Ptk Z 2A+2+2s—2k ' (8)

We stress the fact that, as we have a power series expansion for the density
fxy, it is straightforward to derive expressions for conditional distributions,
conditional expectations, etc.. We illustrate this in this paper by the deriva-
tion of the relation between 6 and p.

Since, even with the analytic expression for the maximum entropy dis-
tribution, it is difficult to simulate, an alternative algorithm for simulation
has been developed. We show that the maximum entropy distributions can
be well approximated by a mixture of diagonal band distributions (a simple
family of joint distributions) where the mixtures are specified in terms of
beta distributions. This enables us to characterise the one parameter family
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of maximum entropy distributions in terms to a single function mapping the
correlation to the beta parameter, and enables relatively speedy simulation

for sensitivity analyses.
We would like to thank Roger Cooke, Isaac Meilijson, Michael Keane and

Jos van Kan for the many discussion with us about this topic.
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This paper gives a introductory survey of the techniques of sensitivity and
uncertainty analyses, together with their application in the validation and optimizati-
on of simulation models.

Further, this paper proposes to distinguish four phases in a simulation study,
namely
(i) screening,

(i) sensitivity or ‘what if’ analysis,
(iii) uncertainty or risk analysis, and
(iv) optimization of the simulated system.

Phase (i): Screening

In the screening or pilot phase the modelers are searching for the important
inputs (parameters, factors) among the many (for example, 281) conceivably
important inputs. Classic experimental designs may require too much computer
time, when the simulation study is still in its early phase with its many inputs.

Bettonvil and Kleijnen (1991) present a screening technique, called sequential
bifurcation. They proceed sequentially (or stage-wise) and split up (or bifurcate) the
aggregated inputs, as the experiment proceeds; at the end the important individual
inputs are identified and their effects are estimated.

They applied their technique to a model for the greenhouse effect of carbon
dioxide (CO,) and other gases. This model, is a deterministic simulation model (set
of non-linear difference equations). It was developed at the Dutch ‘National
Institute of Public Health and Environmental Protection’ (abbreviated in Dutch to
RIVM). Bettonvil and Kleijnen study only a part of a large RIVM model that is called
‘IMAGE’. This part has 281 inputs. Bettonvil and Kleijnen found the 15 most
important inputs after only 144 runs. It is remarkable that the statistical technique
identified some inputs that were originally thought to be unimportant by the policy
analysts.

Phase (ii): Sensitivity analysis

From the viewpoint of the users (clients, management, government) the
important model inputs should be split into two types, namely inputs that are under
the decision makers’ control versus environmental inputs that (by definition) are not
controllable.

Specifically, users want to ask what if questions (scenario analysis): what
happens if controllable inputs are changed? Sensitivity analysis is defined in this
paper as the systematic investigation of the reaction of model outputs to extreme
values of the model inputs and to drastic changes of the model structure. For
example, how does the average waiting time in a queueing model of (say) a super-
market change when the customer arrival rate doubles; what if the priority rule (a
qualitative factor) changes from first-in-first-out (FIFO) to small-jobs-first (express
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lanes)? So this analysis examines global, not local (marginal) sensitivities.

Further on, controllable inputs can be optimized; see phase (iv). Environmen-
tal inputs are examined in phase (iii).

For phase (ii), this paper proposes regression (meta)models to approximate
the input/output behavior of the simulation model. This regression analysis gives
better results if the simulation experiment is well designed. Practitioners often
change one factor at a time. This design, however, gives less accurate estimators
of the factors’ (main) effects; moreover, this design can not estimate interactions
among inputs. Better designs are provided by the classic statistical Design Of
Experiments (DOE); examples are fractional factorials (of resolution 3, 4, and 5),
such as 2P designs.

Furthermore, regression analysis and DOE can be used to validate simulation
models that lack input/output data. Models and submodels (modules) with unobser-
vable inputs and outputs can be subjected to sensitivity analysis, in order to
determine whether the model’s behavior agrees with the judgments of the experts
(users and analysts). In case of observable inputs and outputs, it is also useful to
apply sensitivity analysis.

An example is provided by a military case study, concerning the hunt for
mines on the bottom of the sea. Model validity is of major interest to decision
makers and other users of models.

Phase (iii): uncertainty analysis
Sensitivity analysis (see ii) may show that some inputs of the model are important;
yet the precise values of these inputs may not be known. Obviously these inputs
must be inputs that can not be controlled by the users: environmental inputs. Then
risk or uncertainty analysis becomes relevant.

In uncertainty analysis, values of the model inputs are sampled from prespe-
cified distributions, to quantify the consequences of the uncertainties in the model
inputs, for the model outputs. So the input values range between the extreme
values investigated in sensitivity analysis. The goal of uncertainty analysis is to
quantify the probability of specific output values, whereas sensitivity analysis does
not tell how likely a specific result is. The differences between sensitivity analysis
and uncertainty analysis are further explored in this paper; sensitivity and risk
analyses remain controversial topics.

Risk analysis is used in business and economics, such as investment analysis
(what is the probability of a negative Net Present Value?). In the natural sciences,
uncertainty analysis is also popular.

The techniques for risk analysis are Monte Carlo sampling, including variance
reduction techniques such as Latin hypercube sampling, possibly combined with
regression analysis.

Phase (iv): optimization

The controllable inputs should be steered -by the decision makers- into the
right direction. For example, in the greenhouse case the governments should
restrict emissions of the gases concerned; in queueing problems, management may
add more servers (such as check-out lanes at a supermarket).

This paper proposes Response Surface Methodology (RSM), which is a
heuristic sequential technique that combines DOE (especially 2*° and central
composite designs), regression analysis, and steepest-ascent hill-climbing.

An RSM case study is presented, concerning a steel tube manufacturer’s
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production planning system with 14 controllable inputs and several response types.

This paper is ‘biased’ by more than 25 years of experience with the techni-
que of simulation, especially its statistical aspects and its application to problems in
business, economics, environmental, agricultural, military, and computer systems.
Both deterministic and stochastic (random) simulation models are discussed. The
paper includes many references for further study.

Keywords. Validation, what if, regression analysis, least-squares, sensitivity
analysis, uncertainty analysis, risk analysis, validation, designs of experiments,
screening, Latin hypercube sampling, optimization, perturbation.
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On Benefits and Drawbacks of Customary Sensitivity Measures
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D-85748 Garching, F. R. of Germany
Abstract

In the context of uncertainty quantification of results from computational models the
term "Sensitivity Analysis" usually refers to the application of all methods, procedures
and techniques which provide quantitative statements about the degree of impact of
the individual uncertainty sources on the uncertainty of the final model results. Such
statements are extremely useful since they can indicate where to place further

efforts in order to reduce the uncertainty of model results as effectively as possible.

In principle such analysis can only be performed in a parametric and probabilistic form,
i. e. all uncertainty sources must be represented by uncertain parameters and provided
with appropriate probability distributions which quantify the uncertainty about the
correct value of the parameter.

The results of a parameter sensitivity analysis should be quantitatively presented in
form of parameter specific sensitivity measures, i. e. numbers which quantitatively
indicate the impact of the uncertainty of a parameter on the uncertainty of a model
output. On the basis of such sensitivity measures a parameter uncertainty importance
ranking with respect to a given model output may be established. Obviously, for time
dependent model results the resulting parameter ranking may also

be time dependent.

It is worthwhile mentioning that in this context it is not meaningful to define a sensitivity
measure deterministically as the partial derivative of the output quantity with respect
to a parameter. For, the sensitivity measure should not indicate how numerically
sensitive is a model result to a specific parameter, as partial derivatives do locally in
parameter space, but rather how much the uncertainty of that parameter contributes
to the uncertainty of the model result. (The term "Uncertainty Importance Analysis"
would perhaps be more suggestive than the commonly used "Sensitivity Analysis".)
Thus appropriate probabilistic sensitivity measures must be found which involve the
probability distributions of the uncertain parameter as well as the deterministic
relationship between model output and parameters given by the computational
procedure.

Due to the very complex and time consuming computational models, particularly in
performance assessments of waste disposal systems, it is clear that the desired
sensitivity measures as well as uncertainty statements cannot be derived analytically
but must be determined from samples, i. e. from appropriately selected parameter
combinations and the results of the corresponding runs of the computer model.

Since the time and costs of computer code runs, particularly of waste disposal
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performance assessment codes, are extremely high, it will not be possible to perform
a separate parameter sampling and corresponding model runs for the purpose of
sensitivity analysis. Therefore the same parameter sample as for uncertainty analysis
with the corresponding model results must be used for sensitivity analysis, too. This
is the usual starting point of a parameter sensitivity analysis.

Another problem in sensitivity analysis, rarely considered in the past, may arise in
applications with dependent uncertain parameters.

It is often observed that in many applications in which the state of knowledge on
parameter level is analyzed more thoroughly some parameters must be considered
as dependent in the subjectivistic sense of probability interpretation.

The influence of parameter dependence on uncertainty results has long been
recognized as important. Thus it will not be surprising that it can be of considerable
impact on the results of sensitivity analyses, too.

The present contribution is therefore mainly concerned with the question how reliable
are the sensitivity results obtained with the traditional sensitivity measures if the
parameters are not independent.

The following correlation-regression related sensitivity measures are considered more
closely: correlation coefficient (CC), partial correlation coefficient (PCC), standardized
regression coefficient (SRC) and correlation ratio (CR). Several simple examples are
presented.

To avoid inaccuracies due to possibly insufficient sample size the population versions
of the traditional sensitivity measures are determined analytically.

For the simple linear models considered in the examples it can be seen that in the
case of independent or weakly dependent uncertain parameters all traditional
sensitivity measures can easily be interpreted and give the same results (except PCC).

In the case of stronger dependence between uncertain parameters the sensitivity
results obtained by different sensitivity measures may differ substantially. Their
interpretation may be questionable or even misleading. Thus the traditional sensitivity
measures may not be appropriate.

Considering the "maximum increase in the multiple correlation R2" as measure of
relative importance of the corresponding parameter, the resulting parameter ranking
provides a well interpretable and mostly satisfactory sensitivity result in the

general linear case. It may therefore be preferred to the traditional sensitivity
measures. Moreover, it can also easily be estimated from samples.

Obviously, one can draw the same conclusions also for slightly nonlinear models, i.
e. with high R2 value and with dependent parameters.

As usual, the transition from raw values to ranks may cover the monotone case, too.
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However, examples will also show that in the general nonlinear and monotone case
with small R2 value and dependent parameters the traditional sensitivity measures as
well as the above "maximum increase in the multiple correlation R2" may not be
appropriate. The straight forward generalisaiton considering the "maximum increase
in the multiple correlation ratio" may possible be satisfactory theoretically but in real
applications the computation of its sample version would require a sample size which
can rarely be afforded.

Finally, it also will be discussed why the traditional sensitivity measures succeeded in
providing useful parameter importance rankings in many practically relevant problems
despite the difficulties explained above.
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Applications of Sensitivity Analysis to Combustion Chemistry

Tamas Turanyi
Central Research Institute for Chemistry
H-1525 Budapest, P.O. Box 17, Hungary

Sensitivity analysis has been widely used in chemical kinetics [1] and it has
frequently been applied to combustion chemistry [2] for uncertainty analysis and for
gaining insight into mechanisms. The main combustion simulation codes, including the
programs of the
CHEMKIN [3] package or the RUN1DL package [4], all calculate local
concentration sensitivities.

Most rate parameters in combustion are known with rather large errors. The
uncertainties of reaction parameters are listed in collections of evaluated reactions.
Combustion mechanisms usually include several hundred reaction parameters, but
only some of them have to be known with high precision. These parameters are
usually identified on the basis of local concentration sensitivities. Note, that global
methods have not been used in combustion chemistry, while such methods have been
applied widely to the uncertainty analysis of atmospheric chemical models.

The sensitivity matrix itself accounts for the change of a single variable as a result
of the change of individual parameters. The simultaneous effect of parameter changes
on the concentration of several species can studied as the sensitivity of objective
functions. If the objective function is the sum of squares of deviations, then the
sensitivity of this objective function, called overall sensitivity [5], is equal to the sum
of squares of sensitivity coefficients. In the summation only the species present in the
objective function have to be considered.

Principal component analysis (PCA) of the sensitivity matrix [5] also investigates the
sensitivity of an objective function. PCA is applicable to the study of the effect of
simultaneous parameter changes on several outputs of a model. This method is based
on the eigenvalue-eigenvector decomposition of the cross-product of local sensitivity
matrices.

Overall sensitivities and principal components can be used for uncertainty analysis.
As an example, if the measured concentrations are considered in the objective
function, PCA shows which parameters can be determined from the measurement. It
can also indicate if only e.g. the ratio of two parameters can be determined from the
measurement. Changing the initial concentrations, measurement times etc. allows an
optimization of experiments.

Sensitivity analysis methods are well suited to the investigation and reduction of
combustion mechanisms. Inspection of concentration sensitivities has the advantage
over the study of reaction rates in that sensitivities also account for non-direct effects.

The traditional approach for the identification of rate limiting steps was finding an
appropriate analytical expression for production rates. This method is not applicable
in the case of large reaction mechanisms. It has been assumed, without justification,
that the high sensitivity reactions are identical to the rate limiting steps. Recently it was
shown [1] that identification of rate limiting steps on the basis of the time derivative of
the concentration sensitivity matrix is in agreement with the classical definition and yet
can be applied to mechanisms of any size.

While, in uncertainty studies the initial time of sensitivity calculations is always
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identical to the initial time of simulations, in mechanism investigation sensitivity
analysis can be applied to a narrow interval during the simulation. The features of a
mechanism depend on the concentrations and change continuously during a
simulation. By moving this observation window, changing features of a mechanism can
be monitored. For example, PCA can be used to detect which are the QSSA species
and the redundant reactions during the interval inspected.

The logical extreme of this concept is the study of mechanisms at a single time, i.e.
at a fixed concentration vector. Dynamical sensitivities are not applicable here, but the
sensitivity of reaction rates becomes a useful measure. The partial derivative matrix
of production rates with respect to kinetic parameters is equal to the matrix normed
reaction rate contributions [6]. The principal component analysis of this matrix reveals
kinetic details of the mechanism and allows the detection of ineffective parameters and
hence leads to the reduction of the mechanism.

The Jacobian of the kinetic ODE shows the sensitivity of reaction rates to the
concentrations. This matrix can be used for finding redundant species in the
mechanism [7] and for the calculation of the instantaneous error of QSSA species [8].

A program has been written for the Kinetic aNALysis of Combustion mechanisms.
This program, called KINALC, is a postprocessor to the simulation programs of the
CHEMKIN package. It has been interfaced to the programs of the CHEMKIN package
(SENKIN, PREMIX, PSR, SHOCK, and EQLIB) and also to the RUN1DL package.

KINALC carries out three types of analysis: processing concentration sensitivity
analysis results, extracting information from reaction rates and stoichiometry, and
providing kinetic information about the species.

KINALC can extract the important pieces of information from the sensitivity results
dumped by the simulation programs. It can also calculate the sensitivity of objective
functions, formed from the concentrations of several species. Principal component
analysis of the concentration sensitivity matrix can be used for uncertainty analysis,
parameter estimation, experimental design, and mechanism reduction. The program
can also suggest a list of rate limiting steps.

Principal component analysis of the algebraic rate sensitivity matrix provides an
effective method for mechanism reduction. The program also offers traditional ways
for mechanism investigation and reduction, such as rate-of-production analysis and
calculation of the fluxes of elements from species to species and the contribution of
each reaction to these fluxes. The analysis of the Jacobian allows a reduction in the
number of species and the estimation of the instantaneous error of QSSA species.

KINALC has been designed to be very user friendly. It accepts simple keyword and
may provide a detailed explanation of the results. The program has a modular
structure and can be easily extended by other methods for the analysis of reaction
mechanisms and can be interfaced easily to other simulation programs. KINALC is
available from the World Wide Web at address:

http://chem.leeds.ac.uk/Combustion/Combustion.html
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SENSITIVITY ANALYSIS

OF NONLINEAR MODELS
USING SENSITIVITY INDICES

I. M. Sobol’
Inst. for Math. Modelling of the Russian Acad. Sci.,
4 Miusskaya Square, Moscow 125047, Russia

Abstract

Assume that the model under investigation is described by
a function f(z) defined in the n-dimensional unit cube I™, so that
= (Bigeey®n)s

1.Decomposition of the model function
The representation of f(z) as a sum

f(-TC)=f0+if,‘l,,_i,(xi‘,--.,m{,) (1)
is called decomposition into summands of different dimensions if fo =

const and the integral of every summand over any of its variables is
zero:

1
/f;l“_;,(a:;l,...,m;,)dzim =0 for 1<m<s.
0

Here the sum ¥ contains all fiyl1<i<n,all fi;,1<i<j<n,
all fijx, 1 <1< j<k<mn,.... The last member is fi5. ., and the
total number of summands is 2" — 1.

It follows from the definition that

ﬁ:/ﬂ@m
In

and all the summands in (1) are orthogonal: if (¢1,...,%5) Z (J1,.--5J1)
then
/fil,...,.'.fj,,...,j,dm =0.
m
Theorem ‘1. For an integrable function f(z) the decomposition
(1) is unique.
Thus (1) is a finite orthogonal decomposition of f(z) that doesnot
depend on any prescribed orthogonal system.

2.Sensitivity indices
Assume that f(z) is square integrable. Then all the summands in
(1) are square integrable also, and the values

D= [fYz)dz—f and D, ;= [ fi .dz
/ /7
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are finite. We call them variances because if z were a random vari-
able uniformly distributed (u.d.) in I™ then D and D;,,. ;, would be
variances of f(z) and f;,.;,(zi;,---,%i,). Squaring (1) and integrating
over I™ we obtain the equality

ED;...,=D.

Definition. The ratios S;,..;, = D;,...,/D are called global sensi-
tivity indices (SI).

Clearly,

£5;

Let y = (zk,...,Tk,) be an arbitrary fixed subset of variables:
1<k <...<kn<n,1<m<n. Denote by K the set of integers
(k1y- .. km). Then we define S(y) as the sum of all SI with ¢;,...,1,
belonging to X, and S%*(y) — as the sum of all SI with at least one
of the 74,...,1, belonging to K. Evidently,

1ois = 1

0<S(y) <S¥y) < 1.

The extreme cases are the most informative: If f(z) is piece-wise
continuous then 1° f(z) doesnot depend on y if and only if S(y) =
Stt(y) = 0; 2° f(z) depends only on y if and only if S(y) = S*(y) =
1,

3.Fixing unessential variables

Let z be the set of variables complementary to y, so that z = (y, z).
If §*(z) < 1 it may be possible to replace f(z) by f(y,z0) with a
fixed zo.

Indeed, let us consider the approximation error

8z = 3 [11(&) = F(yy o)
Im

For an arbitrary zo we have 6(z0) > S*!(z). However the following
theorem is true:

Theorem 2. The Lebesgue measure of the set of all zo from
having the property

Irl—m.

8(20) < (14 €71)S5%(2)
exceeds 1 — e (for arbitrarye > 0).
4.Computing sensitivity indices

In [1], 2 Monte Carlo algorithm has been defined that allows a di-
rect estimation of S(y) and $**(y), without computing the summands
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in (1). Each Monte Carlo trial requires two independent random points
u.d. in I", z = (y, 2) and z’ = (¥, 2’), and three computations of the
model function: f(z), f(y,2') and f(y',z). Numerical examples can
be found in [2].
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ON AN ALTERNATIVE
GLOBAL SENSITIVITY ESTIMATOR
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Abstract

Consider a function f(z), £ = (a1,...,2,), defined in the n-
dimensional unit cube: 0 < z; < 1,...,0 < 2, < 1. Let y =
(@iyy ..., 2i,) be a fixed subset of variables; we assune that 1 < s <n
and1<i;<...<i;,<n.

In [1] for estimating the influence of y on f(z) global sensitivity
indices S(y) and S*'(y) were considered. Always0 < S(y) < S*(y) <
1. In general, S(y) = S*(y) = 0 if and only if f(z) doesnot depend
on y, S(y) = S*(y) =1if and only if f(z) depends only on y.

For a linear function f(z) = a2 + ... + a2, one can easily
compute that

S(y) = S(y) = (¢} +...+al)/(a] +...+dd).
Thus, both indices are proportional to the sum of squared partial

derivatives of f(z). And an alternative global sensitivity estimate
G(y) seems physically reasonable:

C(y)zz//(aaf)d///(gf),

k=1}
The new estimator is hardly suitable for numerical computations.
But in several analytical examples we have noticed that

S(y) < G(y) < 5*(y). (1)

and this is an extra argument in favour of the sensitivity indices S(y)
and S*(y).

We have investigated (1) for functions f(x) with separated vari-
ables.

1. Variables of one type.
Consider a function

If p(z) and ¢'(z) are square integrable then (1) holds for all y.



Monday 25 September 1995

34

Outline of a proof. Denote

cz/lt,o(.v)d:u, u:ofl{‘P—(c‘"—)qrdz. (2)

The decomposition of f(z) into summands of different dimensions [1]
is

F2) = ¢ + Blp(a) — o] -« [iplai,) — ] .
The estimators:
(14w -1

ot S“® =860+, 6w=7.

S(y) =

Both inequalities in (1) are equivaleut to the assertion that [(1 4+ u)* —1]/s
increases when s is increased, and this can be verified easily.

2. Variables of two types.
Consider a more general function

f@) = [Tot@) I1 ¥z 9

j=m+1

In addition to (2) denote

d= /lw(z)dm, v= /1 [@ — 1] 2da:.

The relation between the two types of variables can be described by
one parameter

n = !:/1(1/)’)2d1'//1¢2dz:| ; [/l(w’)zdz//ltpzdz] .

If the subset of variables is y = (¥1,....2m), 1 < m < n, and
o(z), @' (), (x).P'(z) are square integrable then (1) is equivalent to

B n—m »
<14 hm,
(L+ov)=m = m (l4o)~m-17 + )

where by = [(1 +w)™ = 1]71.
Outline of a proof. Inequalities (4) can be derived from (1) using

-1 m __
formulas G(y) = (1 + m}{) and S(y) = 0+ u()lm—*(_lui v)n—lm — T

n—

54 (y) = S(u) (1 +)""
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3. Essential and nonessential variables.

Assume that the variables p41,...,2, in (3) are nonessential.
Then a requirement that v is small can be introduced and from (4) a
simple sufficient condition can be derived: Inequalities (1) are true if
nv < 1 and B

By € — T . (5)
mv

Example.

Consider the function (3) with ¢ = 52*, ¥ =1+ esin2nlz,
| - positive integer. Here ¢ =d =1, v = 16/9, v = €%/2,
5= (T/12)m (1 + 2/2)7 L.

The indices S(y) and 5" (y) do not depend on ! and as € — 0 both
S(y) — 1 and S*!(y) — 1. However if ¢ — 0 and lc — oo one can see
that > — oc and G(y) becomes irrelevant: G(y) — 0.

Let n = 20, m = 10, ¢ = 0.01. Then nv = 0.001 <« 1 and
hm = 3.6-107%; condition (5) roughly means that 0 < 0.19/* < 1 and
is fulfilled for / = 1 and [ = 2 only.

In fact, S(y) = 0.99950, S**(y) = 1.00000 while for I = 1,2,3
respectively G(y) = 0.99990, 0.99962, 0.99914.
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Global sensitivity analysis in nuclear problems
T. Homma

Institute of Nuclear Safety,
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Tokyo, Japan

ABSTRACT

There are uncertainties in every step of a probabilistic safety assessment (PSA) of
nuclear installations. With the application of PSA in decision making procedures, the
estimation of uncertainty becomes a most important question. Sensitivity Analysis(SA)
in PSA which complements Uncertainty Analysis (UA) assists in the identification of
influential model parameters, thus indicating where research effort is mostly needed
toward the reduction of risk.

The present paper deals with a new method of global sensitivity analysis of nonlinear
models. This is based on a measure of importance to calculate the fractional
contribution of the input parameters to the variance of the model prediction. Measures
of importance in sensitivity analysis have been suggested by several authors, whose
work is reviewed in this article. More emphasis is given to the developments of the
Russian mathematician I. M. Sobol', whose work on sensitivity indices is the most
general. His formalism is employed throughout this paper where conceptual and
computational improvements of the method are presented. The computational novelty
of this study is the introduction of the "total effect” parameter index. This provides a
measure of the global effect of a parameter, including all the possible synergetic terms
arising from the coupling of that parameter with all the others. Rank transformation of
the data is also introduced in order to increase the reproducibility of the method.

In Institute of Nuclear Safety(INS/NUPEC) PREP and SPOP codes originally
developed in JRC/EC has been introduced to perform UA/SA with these new methods
in each part of PSA for nuclear reactors. These methods are applied to the estimation
of containment failure frequencies in BWRs. The performance of the methods with a
new sampling scheme, using-Sobol' quasirandom sequence are discussed with the
comparison to both crude Monte Carlo sampling and Latin Hypercube sampling.
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On the use of rank transformation in sensitivity analysis
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Abstract

Rank transformations are frequently employed in numerical experiments involving a computational model,
especially in the context of sensitivity and uncertainty analyses. Ranks can cope with nonlinear (albeit monotonic)
input-output distributions, allowing the use of linear regression techniques. Rank transformed statistics are more
robust, and provide a useful solution in the presence of long tailed input and output distributions (Saltelli and
Homma, 1992).

Care must be employed when interpreting the results of such analyses, as any conclusion drawn for the
"ranked" model does not translate easily to the original model. In the present note an heuristic approach is taken,
exploring, by way of practical examples, the differences between the original and the ranked models. This is done
employing sensitivity indices, whereby the total variance of the model output is decomposed into a sum of terms
of increasing dimensionality. The sensitivity indices were developed by Sobol’ (1990, 1993), and have conceptual
similarities with the Fourier Amplitude Sensitivity Test (FAST). Both methods allow the total model variance D to
be written as the sum of terms of different dimension. The sensitivity indices have much in common with the
importance measure discussed by other investigators (for a review, see Homma's work elsewhere in this volume).

The function f(x) = f x1,...,xqunder investigation is defined in the n-dimensional unit cube:

K'={x|0<xi<1; E,...0 (1
Under assumptions described in Sobol’ (1990, 1993) it is possible to decompose f(x) into summands
of different dimensions, eg:

n
f(x1,...,xn)= b+ S (x,’)+ szij(xi. x,‘)+ o+ f20n (xi, X, ... xn) @
E1 1<i<j<n
where f; is a constant. At this point the sensitivity index Sj;. . i; can be introduced:
D. .
Siy..is= % (3
where
D=[1% () dx—f? (4
is the total variance of f(x) and
11
Dy...is= JJ fi2. is ... X (5
00

where fi,.__i; denote a generic term of the series development (2). As shown in Sobol’ (1990, 1993):

n
D=YDi+Y ¥ Dj+..+Di2.n (6
E1 1<i<j<n
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A consequence of (6) is that:

Y, Sir..ds=1 (7
#
where the Z notation indicate sum over all the combinations of indices. Sj;..j; can be considered as
true global sensitivity estimates, as they give the fraction of the total variance of f (x) which is due to
any individual parameter or combination of parameters. The sensitivity indices Sj;...is can be applied to
a large class of functions f (x) due to the possibility of evaluating the multidimensional integrals above
via Monte Carlo methods. This is detailed in Sobol’, 1990, 1993. (see elsewhere in this book; see also
Homma and Saltelli (1994) for some computational improvement). In the following we shall also make
use of "total sensitivity indices Sti. These give the total effect of variable each X; . Imagine a system
with just three input variables; then for variable X1:
S11= 51+ S12+ St13+ S123 (8
S7i can be computed with just one Monte Carlo integral. Both Sj;.. i and Stican be computed
on ranks as well, with a net gain in robustness (Saltelli et al., 1993; Homma and Saltelli, 1994). The new

measures are indicated with the symbols S i;and STi. For the present work the Monte Carlo integrals
are computed with large sample sizes, using Sobol" LPr sequences for the sampling (Sobol’, 1967).

Quasi random numbers are characterised by an enhanced convergence, ie the N "2 stochastic
convergence rate of the crude Monte Carlo can - in some cases and depending on the nature of the

function under investigation - become as large as N~ € with an arbitrary small e>0 (see the work of
Sabol', elsewhere in this book).

The plan of the present work is to use the difference between Sj. . j; and S,*,,,_is (or their estimates) as

ameasure of the differences between fand f*, where the latter represents the function which is obtained
when both the input and the output values are replaced by their ranks. We show that the main effect of
the rank transformation is to increase the relative weight of the first order terms, representing the linear
effects, at the expense of the (synergistic) higher order ones. For the purpose of this abstract results
are presented for a single test function of three indices ijk:

= Z (ax) by)’ Z (cxy)
=0 = 0
where a,b,c are arbitrary constants and x,y are independent variables uniformly distributed in [0,1]. The
nonlinearity of fji with respect to x,y and their cross product will depend upon the value of the indices
i,j,k respectively. Also:
lim fje= e@ + e®) 1 &9 (10

e
jree
koo

We can write the sensitivity indices of fixand fjxas
1=Sx+Sy+Sxy= S;+S;/+S;y (11

€]
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' Ae ( g‘xy— g;y) .
In the figure 1 we have plotted the values of 8y Sky) and of versus the ratio
g p ( Sxy— Sxy) _g—xy

kaaxiiy) for all the combinations of ij,k € [1,5]. For this Figure a=b=1; c=3, and a large LPr sample of
base size N=2'° was used. The figure shows that there is indeed a marked difference between fikand

ﬂ',"k. The second order term, due to the coupling of x and y, can be completely overlooked (~ 90% error)
by working on the rank transformed data. The error increases with the ratio of the importance of the
second order term relative to the first order ones, ie with #uax(iy) . The other examples discussed in the
present work suggest that those parameters which influence the output mostly by way of synergism may
be overlooked in an analysis based on the ranks. This difficulty increases with the dimensionality of the
problem, and may lead to the failure of a rank based sensitivity analysis.

Homma T, and Saltel, A., 1994, Global sensttivity analysis of nonlinear models. Importance measures and Sobol'

1.0
08 8 %Oo ¢ Y o ©
o8| @8 8 °
M s & 0 S()~5"(xy)
= X © (S(xy)=S*(xy))/S(xy)
= o
g
0.4
0.2 q
8 g 8 o
e§§ Bg ©
@8 © e
0.0 _@g (I) 1 1 1
0.0 1.0 2.0 3.0 4.0 5.0
k/max(i,j)

sensitivity indices, European Commission, EUR report 16052EN, Luxembourg, 1994.

Saltelli, A., Andres T. H. and Homma, T., 1993, Sensitivity analysis of model output; An investigation of
new techniques, Comp. Stat. and Data Analysis, 15, 211-238.

Saltelli, A., and Hjorth, J., 1995, Uncertainty and sensitivity analyses of dimethylsulphide OH-initiated
oxidation kinetics, to appear in J. Atmos. Chem. (summer 1995).

Saltelli, A. and Homma, T., 1992, Sensitivity analysis for model output; Performance of black box
techniques on three international benchmark exercises. Comp. Stat. and Data Analysis 13 (1), 73-94.

Sabol’, I. M., 1967, On the distribution of points in a cube and the approximate evaluation of integrals,
USSR Computational Mathematics and Mathematical Physics 7(4), 86-112.

Sobol’, I. M, 1990 and 1993, Sensitivity estimates for nonlinear mathematical models, Matematicheskoe
Modelirovanie, 1990, Vol. 2(1), 112-118 (in Russian), translated in Mathematical Modelling and Compu-
tational Experiments, 1(4) 407-414, 1993.



Monday 25 September 1995 40

Sensitivity analysis for atmospheric chemistry
models via automatic differentiation

A. Sandu
Program in Applied Mathematics and Computational Sciences,
The University of Iowa, lowa City, IA 52246 (sandu@cgrer.uiova.edu).
G. R. Carmichael

Center for Global and Regional Environmental Research and the

Department of Chemical and Biochemical Engineering
The University of Iowa, lowa City, [A 52246 (gcarmich@icaen.uiowa.edu)
F. A. Potra

Departments of Mathematics and Computer Science,

The University of Iowa, lowa City, IA 52246 (potra@math.uiowa.edu).

Keywords: Atmospheric chemistry, Automatic Differentiation.

1. Introduction.

The most common form of sensitivity studies with comprehensive atmospheric chem-
istry/transport models have been done using the so-called “brute force” method ! , i.e., a
number of input parameters are selected to be varied and the simulation results are then
compared. This method becomes less viable as the model becomes more comprehensive.

A recently developed technique for sensitivity study is automatic differentiation tech-
nology. Automatic differentiation is implemented by precompilers that analyse the code
written for evaluating a function of several variables. These pre compilers automatically
add instructions needed to compute the required derivatives by properly handling quan-
tities that are common to the function and its derivatives and by efficient use of available
derivatives in a library. The resulting expanded code is then compiled with a standard
compiler into an object code that can simultaneously evaluate derivatives and function
values. This approach is superior to finite difference approximation of the derivatives
because the numerical values of the computed derivatives are much more accurate and
the computational effort is significantly lower (Griewank and Corliss, 1991; Griewank et
al., 1993).

A promising new implementation developed at Argonne National Laboratory and
Rice University over the last couple of years is the package ADIFOR (Automatic Differ-
entiation in FORTRAN) (Bischof et al., 1992).

The chemistry kinetics problem may be formalised as follows. If ¢;(t) is the concen-
tration of the i*" species, the kinetics of a chemical system is described as an initial value

LA variety of alternative technicues are also available including Green’s function analysis (Cho et al.,
1987), adjoint models and several variations of the direct decoupled methods (Dunker, 1984).
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problem:
dC,‘ i
O ftet) 1) = PLEt) - Dlelt) - e), (1
ci(to) = c?, i=1--n
where f;, 7 = 1,...,m are the parameters of the system (for example, reaction rate

constants, etc), P € R*, D € R™", D = diag(D;) are the production and the destruction
terms, respectively. By differentiating (1) with respect to the vector of parameters we
obtain the variational equations:

d . ; .
EVci(t) =VP'(c)—-VD'(c)-¢i— D"V, i=1,...,n (2)

2. Computational aspects with automatic differentiation.

The following were established during this study:

Result 1: By forward automatic differentiating a consistent (i.e., order one), pre-
scribed step-size method for solving (1), one obtains a consistent method for solving the
variational equation (2).

Result 2: The forward automatic differentiation applied to a fixed point scheme
(e.g., the one resulting from solving the steady state equations for radicals) produces
a fixed point scheme that solves a steady-state equation for sensitivities. This second
scheme can be guaranteed to converge by taking some special precautions.

The above results show that direct differentiation of an existing code (for solving
chemical kinetics) will produce a program able to correctly compute the sensitivity coef-
ficients, provided the stated hypotheses are satisfied.

3. Direct method with automatically generated
variational equations.

Our study shows that best results are obtained when generating (2) via automatic
differentiation, then solving the variational system using an integrator of choice.

Looking at the variational equation (2) we remark that it is formulated in production
- destruction form:

Pilc) =D -V, i=1,...,n , where:
VPi(c)-VDic) ci, i=1,..,n
Di(e), i=1,.n, j=1,..,m

Il

——Vc,(t)
P(c)

[P,

IE

Il
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Hence, dedicated chemistry kinetics integrators can be employed, taking full advan-
tage of their computational speed. In the study both methods ( direct automatic dif-
ferentiation of the existing algorithm and direct method with automatically generated
variational equations ) were tested; while the former is easier to apply, the latter is more
accurate.

4. Application of automatic differentiation to a
comprehensive atmospheric chemical mechanism.

The chemical mechanism used in this study is that presently used in the STEM-II
regional scale transport/ chemistry/ removal model (Carmichael et. al., 1986). This
mechanism consists of 86 chemical species and 178 gas phase reactions. To test the
robustness of the above numerical algorithms, we have employed six different scenarios?®.
These conditions represent various chemical environments ranging from: low NO, oceanic
boundary layer regions (Marine); high NO, continental boundary layer regions without
(Land) and with isoprene (Bio); dry upper tropospheric regions; biomass burning plumes
without (Plume 1) and with (Plume 2) reactive hydrocarbon species. ADIFOR 2.0 was
used to calculate sensitivities of ozone with respect to initial conditions and reaction rate
parameters.

5. Conclusions.

ADIFOR 2.0 has been successfully used in the sensitivity analysis of a comprehensive
tropospheric chemistry model.

Automatic differentiation appears to be a valuable tool for sensitivity analysis of at-
mospheric chemistry models. In this paper we focussed solely on the chemical equations.
However the method applies to the coupled transport/ chemistry problems as well. We
are presently using this technique with the STEM-II model.

A valuable aspect of employing automatic differentiation for sensitivity analysis stud-
ies is that the atmospheric chemistry/ transport/ removal models are permanently subject
to modifications and improvements. For routinely performing sensitivity analysis, one
needs that, whenever a modification is performed in the model, the corresponding adjust-
ment be made in the variational equations. Since the slightest mistake in the generation
of variational equations could lead to useless results, one needs to thoroughly check for
their correctness. Both the issues of

o easily generating the sensitivity equations and
o making sure they are error free

can be directly and successfully addressed by the use of automatic differentiation.

2These scenarios follow the IPCC (Intergovernmental Panel on Climate Change) photochemistry
intercomparison.
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IDENTIFICATION OF CRITICAL VARIABLES AND FUNCTIONS IN CHEMICAL
SYSTEMS

by

Herschel Rabitz
Department of Chemistry
Princeton University
Princeton, New Jersey, U.S.A., 08544

Sensitivity analysis of dynamical systems can provide a means for addressing (a) what
is important in a model, and (b) how important the identified variables are. Often the
first of these questions may be answered satisfactorily in a qualitative sense, while the
latter subject is strictly quantitative and includes the statistical analysis of model
performance in relation to input uncertainties. As a model is exercised at a nominal
operating point in the parameter space, a local gradient sensitivity analysis is a
powerful tool for identifying the key parameters and dependent variables in the model.
However, when significant uncertainty exists in the input parameters, the linear
sensitivities alone will not likely provide a reliable estimator of the output uncertainty
in the model, in order to address question (b) above. The employment of global
techniques are especially important in the latter context. The present paper will
consider the use of local sensitivity analysis for identifying key parameters and
variables in various problems of the chemical sciences. In addition, a guided Monte
Carlo technique will be introduced to address statistical uncertainty issues.

A. IDENTIFICATION OF KEY VARIABLES.

Many problems in the chemical sciences can be categorized in a hierarchical sense,
starting from the most intimate atomic scale and moving up to more macroscopic
events, including such phenomena as combustion processes and atmospheric
chemical dynamics.[1] A variety of physical length and time scales will transcend this
hierarchy. Nevertheless, it must still be true that events at the atomic and molecular
level, involving the shortest length and time scales, must have their impact on
observable events at the macroscale. The linkage between these extremes poses
interesting questions regarding which variables survive as being important, in the
passage from one hierarchical level to another.

The utility of gradient-based sensitivity analysis to address these questions has been
illustrated on a variety of chemical systems, involving molecular electronic[2],
vibrational[3], and rotational motion[4] through the physical processes of intramolecular
dynamics and molecular collisions. In turn, at the more macroscopic scale, chemical
reactive kinetics, energy transfer, and transport processes also have been explored
for their important information content with gradient-based techniques.[5] Two general
classes of parameters need to be distinguished: those that are constants, and those
that depend on the coordinates and/or time. In the former category, the sensitivities
are partial derivatives of the output variables with respect to input parameters, while
in the latter case, functional sensitivity densities are appropriate.

Finally, sensitivity analysis is most often utilized in the forward sense of analyzing how
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the output depends on the input of a model. In turn, these same sensitivity
coefficients and densities may be employed to develop efficient, stable inversion
algorithms for extracting the underlying model parameters from laboratory data. In the
chemical sciences, this application of sensitivity information has treated problems of
inverse scattering and inverse spectroscopy.[6]

B. GUIDED MONTE CARLO ANALYSIS OF MODEL UNCERTAINTIES.

A common objective in chemical, or other types of modelling, is to assess the
statistical quality of the output variables in relation to uncertainties in the input
parameters. In the small uncertainty regime where linear sensitivity analysis is
appropriate, the associated coefficients can be immediately employed to compute the
output statistics from the input uncertainties. However, all too often, the model
uncertainties will have an overall range that exceeds the linear regime. Various
approaches to treating this problem have been and are being developed, as evident
from much of this Symposium. A guided Monte Carlo technique may be especially
effective in this context. Traditional Monte Carlo sampling of the input parameters and
repeated execution of the model will eventually lead to the true output statistics.
However, this process can be exceedingly expensive, when each model run is
computationally intensive. This computational burden can be lessened by first
observing that even if the input uncertainty distributions are broad, they are naturally
centered around the nominal values of the input parameters. Thus, typical Monte
Carlo runs will often correspond to samples that are in the linear or quasi-linear
regime. These latter cases may be effectively treated by utilizing linear sensitivity
coefficients for statistical mapping. In turn, the outlying extreme parameter variations
are those best suited to Monte Carlo analysis. Thus, it is suggested to combine the
two complementary approaches into an overall flexible guided Monte Carlo routine for
statistical uncertainty analysis.[7]

In the guided Monte Carlo technique, the sensitivity coefficients serve two roles. First,
they are used to estimate whether a given random sampling of the parameter space
corresponds to a parameter set which is in the linear or nonlinear regime. If the linear
regime is indicated, then the sensitivity coefficients are used to perform the mapping
to the output. On the other hand, an identification of the nonlinear regime would lead
to rerunning the model at the new point in the parameter space, and accumulation of
that output to the statistics. Thus, an overall probability distribution of the output may
be generated, involving a superposition of results from both the linear and nonlinear
mapping regimes. Generally, the expectation is that the wings of the output
distribution will be given by Monte Carlo runs, and the center, by sensitivity analysis.
The guided Monte Carlo technique was explicitly developed in the context of chemical
kinetic modelling, although it could just as well be applied to other areas.

In summary, it has been demonstrated that sensitivity analysis has a broad-based
utility in the chemical sciences.
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SENSITIVITY ANALYSIS USING LYAPUNOV EXPONENTS:
APPLICATION TO CHEMICAL REACTORS
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1. INTRODUCTION

It is well known that, for certain values of the parameters in the mass and energy
balance equations that represent the dynamic behaviour of chemical reactors, the
system becomes very sensitive to the values of the initial conditions. Sensitivity to
initial conditions is a well-known characteristic of chaotic phenomena. To study such
systems, researchers have developed powerful methods of extracting physical
quantities from theoretically or experimentally obtained signals (1). Between them,
local Lyapunov exponents are the average exponential rates of divergence or
convergence of nearby orbits in phase space (2). Since nearby orbits correspond to
nearly identical states, exponential orbital divergence means that systems whose
initial differences we may be not able to resolve will soon behave quite differently. This
definition is, intuitively, related to temperature sensitivity concerning several input
variables along the trajectory, corresponding to nominal operating conditions in the
context of chemical reactor theory (3).

Local Lyapunov exponents were used in the definition of a generalised sensitivity
criterion (4) in the context of single reactions in a batch reactor working under
isoperibolic conditions: constant jacket temperature. In this work, this criterion is
extended to cases where two consecutive or two parallel reactions occur
simultaneously.

2. SENSITIVITY CALCULATION USING LOCAL LYAPUNOV EXPONENTS
Given a continuous dynamical system in an m-dimensional phase space, it is possible
to monitor the evolution of an infinitesimal m-sphere of initial conditions. This m-sphere
will become an m-ellipsoid due to the locally deforming nature of the flow. The jth one-
dimensional local Lyapunov exponent, Aj, is then defined (5) in terms of the length of
the principal axes of the ellipsoid at time t, pj(t) as:
A(t) = log L) j=1,...m (1)
: ¢ 109, pj(O) ;

The local Lyapunov exponent monitors the behaviour of two close neighbouring points
in a direction of the phase space as a function of time. If the points expand away from
each other, the Lyapunov exponent will be positive, if they converge, the exponent
becomes negative, if the two points stay the same distance apart, the exponent stays
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near zero. The sum of the local Lyapunov exponents gives the evolution of the volume
of unitary hypersphere in the state space as follows:

vol(t) = vol(0) 2" @)

n= le(tﬂ @)
i

As the volume increases, the trajectories of two neighbouring points in state space are
separating i.e. the dynamic behaviour of the system undergoes a much larger
deviation. For this reason, it is possible to define the sensitivity using Local Lyapunov
exponents as follows:

where

[n
Amax 2
TR 4)
¢ Ad
where ¢ is the parameter in relation to which we want to know the sensitivity of the
system and p is a function of the parameters of the system. In this frame criticality is

defined as the value of ¢ for which Lyapunov sensitivity has the first extreme.

3. CASE STUDY: CONSECUTIVE AND PARALLEL REACTIONS

In this work we apply the sensitivity criterion using Lyapunov exponents to the case of
an isoperibolic - constant jacket temperature- batch reactor where two reactions either
consecutive or parallel occur simultaneously. The pertinent dimensionless equations
representing mass and energy balances are:

Consecutive reactions A 1—) B 2—) C Parallel reactions A 1—) B,A 3% C
du n, du n

A _ g _ A _ P 2
?_qu d’C—qu p,fu,
du i du i

_ 2 _B_ 1

—dt— f uA p2f Ug e -f1uA
dar daT )
d'c_cxf u "rad 2Pyt B - B(T-1) o =af, u "ok 5 P, Ty Ug - B(T-1)
with initial co.ndltlo‘ns: with initial cqndmo_ns:
ua=1, ug=ug, T=T att=0 ua=1, ug=ug’, T=T att=0

4. CONCLUSIONS

These reactions represent the situation in which one is dealing with a primary desired
reaction which can be followed by an undesired exothermic secondary reaction. It is
shown that the criterion based on Lyapunov exponents holds true also in these cases -
see figs. 1 and 2 - and it can be used not only to identify critical parametic regions but
also others in which the performance of the reactor is optimal.
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Figure 1. Sensitivity, see eq. (4), as a function Figure 2. Effect of activation energy of the
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NOTATION Greek symbols
o  dimensionless heat of reaction

parameter, (-AH{) Ca! IpfCp Ta
B dimensionless heat transfer

E activation energy
fi  exply (T-1)/T)
reaction rate constant

n  reaction order parameter, US,/p; Cp k1(T)Cal (M1-1)
Sv  exchange s1urface area per unit AH; heat of i-th reaction, J/mol
v<.)lume: m o vi dimensionless activation energy,
I dlme?swnl.ess temperature, T/T, EiRT,
1 .reacnng bl fempermic. Ik Aj heat of reaction ration, AHj/AH1
T, jacket temperature, K i 3
t time, s p¢  density, kg/m
u  dimensionless concentration, C/Ca'  Pi rea_ction rate constant ratio,
U  overall heat transfer coefficient, CAm 1) k(T ,)/k1 (T )
W/m? K t  dimensionless time, kj(T,) Cal @1-D¢
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ESTIMATING THE UNCERTAINTY OF A LAGRANGIAN
PHOTOCHEMICAL AIR QUALITY SIMULATION MODEL (PAQSM)
CAUSED BY INEXACT METEOROLOGICAL INPUT DATA

G. Wotawa, A. Stohl and H. Kromp-Kolb
Institute of Meteorology and Physics, University of Agriculture, Forestry and Renewable
Natural Resources, Vienna, Austria

Model description:

A Lagrangian photochemical air quality simulation model has been developed by the
Institute of Meteorology and Physics in cooperation with the Austrian Research Center
Seibersdorf. The model is based on 96 hours backward trajectories calculated from
wind fields of the numerical weather prediction model operated by the European Centre
for Medium Range Weather Forecasts (ECMWF) using the trajectory model FLEXTRA
(1,2). The computation procedure used to get a representative transport level has been
described in (3). For the last 12 hours of transport, local trajectories calculated from
surface wind observations in Eastern Austria are blended with the synoptic scale
trajectories to improve model performance, as pollutant concentrations highly depend
on local transport patterns during the last few hours (4,5). Meteorological data along a
trajectory are taken from ECMWF model analyses and from observations. Observation
based surface and boundary layer data are computed using the OML Meteorological
Preprocessor (6). The model consists of 8 vertical boxes, during the last 12 hours 3
horizontal boxes are simulated. Vertical diffusion is parameterized using Monin-
Obukhov theory in the surface layer and K-profile closure in the stable boundary layer
and unstable outer layer (7,8). Horizontal diffusion is parameterized during the last 12
hours of transport using constant exchange coefficients. Dry deposition of pollutants is
simulated using (9). For the simulation of chemistry, the CBM-IV mechanism (10) has
been implemented. Numerical integration is done using the QSSA method (11).
European emissions are taken from the EMEP 1991 inventory, Austrian emissions are
computed on a 5x5 km grid using the emission inventory of the Austrian Research
Center Seibersdorf.

Tests of model performance:

Testing of model performance will be done by two means:

e Comparison of model results with ambient air quality measurements

o Sensitivity and uncertainty analysis

Preliminary comparisons of model results with routine Oz and NOyx measurements had

already been done. First results were very promising. Systematic multispecies

comparisons, however, which are necessary for model validation, have not been done

yet.

For sensitivity and uncertainty analysis, the following parameters of the model are of

interest (12):

o Design parameters (simulation time, air parcel dimensions)

o Constitutive parameters (deposition velocity, exchange coefficients, chemical reaction
rates)

* Model input data (trajectory position, meteorological input data, emissions)
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Sensitivity analysis for meteorological model input:

Sensitivity analysis has been done for the following input data: temperature (TT),
relative humidity (RH), boundary layer height (Hpw), friction velocity (U*), surface
sensible heat flux (Fp), precipitation (RR) and shortwave solar radiation (GR). As the
base case scenario, calculations from July 1st, 1994 00 UTC to July 15th, 1994 00 UTC
were done for receptor point llimitz in Burgenland/Austria (16.769°E and 47.770°N).
First, the relative sensitivity of chemical species C to meteorological input variable X
was calculated:

Z‘ 8_C (1)

C|lo X

Afterwards, the relative variances of meteorological input data within the air parcel had
been taken to describe the uncertainty of the data:

cx =

Ry==0, ()

Doing so, the total variance of the model output due to meteorological input can be
calculated as follows:

> —

6% =§x‘,sm ‘R, (3

Table 1 shows the results of sensitivity analyses for 4 chemical species in the first
model box (0-30 m). In the case of O3z and HzO5, the friction velocity U* turned out to be
the most important parameter, because there is remarkable sensitivity combined with
high data uncertainty. One important result of the analysis is that Oz is one of the least
sensitive species of the model, whereas other photooxidant and precursor
concentrations are much more sensitive to input data variations and therefore more
uncertain.

SPEC | PAR | [X/C| | [IX[sx| sc SPEC | PAR | IX/C| | [/X]sx| sc
[aC/aX| |aC/ax|

Og 1T 8.60e+0 | 4.70e-3 [ 1.98 NO 1T 6.70e+0 | 4.70e-3 | 0.0057
Oa RH 3.30e2 | 1.12e-1 | 0.18 NO RH 1.19e"T_| 1.12e"T | 0.0024
O3 Hpbl | 6.40e2 | 3.37e1 | 1.06 NO Hpbl | 54561 | 3.37e-1 | 0.0331
Oa U 2.00e-T | 4.35e-1 | 4.26 NO U 2.65e1 | 4.35e-1 | 0.0207
O3 Fh 35562 | 4.93e1 | 0.86 NO Fh 1.12e-7_| 4.93eT | 0.0100
Oa RR 2.00e8 | 2.34e+0 | 0.23 NO RR 6.30e2_| 2.34e+0 | 0.0027
Oa GR 2.65e-1 | 1.59e-1 | 2.06 NO GR 1.43e1_| 1.59e1_| 0.0041

{031 = 49 « 10.6 ppb (21.7 %) [NOJ = 0.18 + 0.08 ppb (43.7 %)
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SPEC | PAR IXIC| | /X[ sx | sc SPEC | PAR IXIC| | [1IX[sx | sc
|ACIAX| [aC/aX|

NO» TT 6.90e+0 | 4.70e3 | 0139 | HpOp | TT 9.65¢+0 | 4.70e3_| 0.095
NO» RH 2.20e-1 | 1.12e-1 | 0106 | HoO» | RH 9.05e-1 | 1.12e-1 | 0.213
NO, Hpbl 490e-1 | 3.37e-1 | 0710 | HpOp | Hpbl 210e-1_| 3.37e-1 | 0.149
NO» U* 1.03e2 | 4.35e1 | 0.019 | HoO» | U* 4.00e-1_| 4.35e-1_| 0.365
NO» Fh 6.45¢2 | 493e1 | 0.137__| HpO» | Fh 6.45¢2 | 4.93e-1 | 0.067
NO» RR 1.2562 | 2.34e+0 | 0126 | HoO» | RR 1.20e2_| 2.34e+0 | 0.059
NO» GR 4.25¢-1 | 1.59e-1 | 0291 | HoO» | GR 79061 | 1.59e-1 | 0.264

[NO2] = 4.3 + 1.5 ppb (35.5 %) [H202] = 2.1 « 1.2 ppb (57.7 %)

Table 1: Sensitivity analysis for meteorological input data.
Monte Carlo simulation:

The Monte Carlo method is a technique widely used for data sampling. The data are
varied using normal distributed random numbers. One base case scenario run and 9
Monte-Carlo scenario runs were done. The variances used for sampling are shown in
table 2. The results of the Monte Carlo simulation are listed in table 3. As can be seen,
Monte Carlo sampling shows smaller uncertainties than sensitivity analysis, with the
exception of NO. However, both results show that the model output variation due to the
variability and uncertainty of meteorological input data is within an acceptable range,
especially as far as Og concentrations are concerned.

LON | LAT T RH | Hpbl u* GR Fh RR Kz Ky vd Sc

2.5/0. | 2.5/0. | 1.40 | 1.60 | 230.0 | 0.07 |420 |40.0 |1.0 250 |250 |250 |25.0

Table 2: Input data variances for Monte Carlo simulation. In case of trajectory position
(LON,LAT), variance (given in degrees) is linearly reduced from beginning to end of trajectory.
Kz and Ky are the vertical and horizontal exchange coefficients, vd is the deposition velocity
and Sc the scavenging coefficient. For these four data, variances are given in % (sx/X).

O3 NO NO, Hp0, PAN co

49.0 - 7.2 0.18 - 0.17 4312 21+03 15-0.2 250.0 - 21.0

Table 3: Uncertainty of model output as computed in the Monte Carlo simulation. Mean values
and standard deviations of species concentrations are tabulated in ppbv (confidence level
67%).
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THE EVEREST PROJECT : SENSITIVITY ANALYSIS OF GEOLOGICAL
DISPOSAL SYSTEMS
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! SCKeCEN, Mol, Belgium
2 CEA-IPSN, Fontenay-aux-Roses, France
3 ECN, Petten, the Netherlands
* GRS, Cologne, Germany

In the framework of the fourth R&D programme “Management and storage of radioactive
waste" (1990-1994) of the European Commission (EC) the EVEREST project /1/ started
in 1991. The main objective of EVEREST is the identification of the elements which strongly
influence the performance of a geological disposal system. The conclusions of EVEREST
are expected to contribute to the determination of research priorities in future R&D
programmes. The EVEREST project is a collaboration between CEA-IPSN (Fontenay-aux-
Roses, France), GRS (Cologne, Germany), ECN (Petten, the Netherlands) and SCKeCEN
(Mol, Belgium). Three types of host formations (clay, salt and granite) and six sites are
studied.

The EVEREST project can be considered as a complement to the earlier EC projects
PAGIS /2/ and PACOMA /3/ which focused essentially on the development of a common
European methodology for performance assessment of geological disposal systems. A
typical characteristic of the developed approach is the application of as well deterministic
as stochastic calculations in the assessment. Indeed it was found that the two approaches
are strongly complementary and that each of them offers advantages that cannot be
obtained with the other approach.

Within PAGIS and PACOMA a number of sensitivity studies have already been elaborated;
these studies considered mainly sensitivity to the values of the model parameters. In
EVEREST the concept uncertainty is considered in a broader perspective. Not only the
uncertainties in the model parameters but also the uncertainties in the conceptual models
and in the description of the scenarios are taken into account.

Most of the sensitivity analyses with respect to parameter values were carried out by
making Monte Carlo simulations followed by sensitivity analysis mainly based on linear
regression methods. Examples of effective sensitivity estimators are partial rank correlation
coefficients and standardized regression coefficients. Non-parametric statistics like the
Smirnov T statistic were applied to focus the sensitivity analysis on the small number of
runs which yield the highest dose rates. For the parameter sampling as well random
sampling as Latin Hypercube sampling were applied. In many cases Latin Hypercube
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sampling was preferred because only a small number of runs, e.g. 40 runs for a problem
with 25 independent variables, could be carried out due to the required computer times. A
sampling scheme based on fractional factorial design has been applied for only one
application where it was found that this approach is very effective for determining sensitivity
estimators but it should not be recommended to evaluate the uncertainties in the calculated
doses. Other sensitivity estimators have been used at GRS; these techniques are
presented in another paper by Hofer /4/.

In the case of sensitivity studies on disposal in clay and granite small releases of
radionuclides into the biosphere are calculated for each run of the Monte Carlo simulation.
However a repository in salt provides a complete confinement of the disposed radionuclides
as long as the geological salt barrier is intact. However after disruption of the salt layer the
radionuclides are relatively fast released into the aquifer system. For some scenarios the
sensitivity analyses can be complicated by the fact that only a small number of the runs in
the simulation yield doses which are different from zero.

For the German salt site, a probabilistic sensitivity study using a very detailed near field
model and a two-dimensional geosphere model has been performed. Nevertheless,
especially the geosphere model was of a more generic type because several important
effects occurring on the real site were not taken into account. Some problems occurred
concerning the correct handling of a large number of runs which show a different numerical
behaviour.

For some cases deterministic calculations were applied to evaluate sensitivities to
parameter values. For an analysis of the sensitivity of the calculated water flow and
transport to the values of the model parameters it is not evident how Monte Carlo
simulations can be carried out because many combinations of parameter values will result
in runs that are in conflict with, e.g., the observed piezometry. For the French clay and
granite sites detailed two- and three-dimensional aquifer models are applied and the
computer time needed for one calculation is considerable; therefore a deterministic
sensitivity study based on a small number of calculations was preferred.

Detailed studies on uncertainties in conceptual models have been elaborated. These
studies focused on the modelling of the behaviour of the host formations and the repository
and on aquifer modelling. The potential impact of uncertainties in the migration mechanism
in clay layers due to organic complexation was evaluated. For salt formations extensive
sensitivity studies of the model for convergence and compaction of backfilled openings and
of the modelling of the repository have been elaborated. In aquifer models considerable
uncertainties occur which are due to uncertainties in the structure of the geology, i.e.
thickness and extension of the various formations, faults and erosion channels,
uncertainties in the boundary conditions and uncertainties in the parameter values because
of the scarcity of the available observations and of spatial variability. The sensitivity
analyses on conceptual model uncertainty carried out within EVEREST were mainly
deterministic. Indeed large scale or three-dimensional aquifer models require extremely
long computing times which makes that repetitive calculations, such as Monte Carlo
simulations, are difficultly justifiable.

GRS has performed a stochastic study on conceptual model uncertainty by selecting
randomly a geosphere model out of a set of eight possible models and by combining the
selected model with randomly sampled parameter values.
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An important aspect of uncertainty in the scenario description that received a lot of attention
in EVEREST was the treatment of the expected evolution of the climate and its impact on
the behaviour of the repository systems. Indeed forecasts of the climate for the next

100,000 years expect that a moderate glaciation will occur after about 25,000 years and
a more severe one after about 70,000 years. These glaciations will strongly modify the
water flow in the aquifer system because they cause changes in the amount of infiltrating
water, in the aquifer condition, i.e. a phreatic aquifer might become confined by permafrost,
and in the boundary conditions. The lowering of the sea level will strengthen the river
erosion. At the very long-term the climatic changes will induce considerable uncertainties
in the shallow components of the repository system, i.e. the aquifers and the biosphere.
The sensitivity of the calculated doses to these uncertainties has been evaluated by
performing a stochastic calculation in which the ranges of the parameter values enlarge
with time, e.g. by increasing the standard deviation of the distribution.

Conclusions with respect to sensitivity analyses that can be drawn from the EVEREST
exercise are that an approach based on Monte Carlo simulations and regression methods
can be successfully applied. Some sites are now getting better characterized what makes
that realistic modelling approaches including three-dimensional simulations are applied.
However the considerable computer time needed for the elaboration of one single
calculation causes problems for the application of Monte Carlo simulations. It appears that
efficient sampling strategies are needed. Another problem that arose during the elaboration
of EVEREST was how to analyse problems were a large number of the runs yields zero
outcome. Deterministic approaches were often preferred to make evaluations of conceptual
model uncertainty in the geosphere models. Further developments are required on the
systematic integration of uncertainties due to future climate changes in the performance
assessment. A challenge for sensitivity analysis remain the evaluation of the sensitivity of
the calculated dose rates to the combined uncertainties in the parameters values, the
conceptual models and the scenarios descriptions.
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Introduction

In Sweden the main alternative for disposal of spent nuclear fuel is repositories in
deep crystalline rock. The potential safety of such repositories are analyzed through
performance assessments that include model calculations of radionuclide release and
transport via groundwater through the host rock. The input to such models depends
upon properties both of the engineered barriers and on the properties of the geologic
medium. In general these properties are both variable and uncertain, and their impact
on the resulting releases can sometimes be strongly non-linear. Consequently, it is of
high interest to explore model responses to potential uncertainties as such analyses
provide insight into what degree of precision that is necessary in order to make
precise enough predictions of repository safety. Such an uncertainty and sensitivity
analysis has been part of a repository performance assessment research project, SITE-
94 that is conducted by the Swedish Nuclear Power Inspectorate (SKI).

Treatment of uncertainty and variability

Site evaluation, with real site characterization data, is used to determine information
of transport paths in the geosphere and to deliver information on geosphere
interaction with the engineered barriers. Such evaluation involves development of
alternative conceptual models, consistent with site data, both for the state of the
disposal system immediately after repository closure and for the states after climatic
changes. For each conceptual site model a suite of calculation cases, or variants have
been developed. The basic methodology when constructing these variants was to
parameterize scenario uncertainty, system uncertainty, conceptual model uncertainty
and parameter uncertainty.

For a given conceptual model, the calculated parameter uncertainty and variability
information is usually expressed in terms of intercorrelated ranges, distributions or
sometimes as set of point values. In order to provide input to the radionuclide release
and transport, that reflects parameter uncertainty and variability, this information has
been abstracted into sets of single value parameter variants.

The hydrological transport properties in the geosphere can be characterized in terms
of two parameter groups that control the radionuclide transport in the geosphere: “F-
ratio” (F=a*L/q) and Peclet number (Pe=q*L/(6*D,)), where a is the flow wetted
surface, L is the transport distance, g is the Darcy velocity, 6 is the flow porosity and
D, is the longitudinal pore water dispersion.

Each conceptual hydrology site model produces a range of values of these
parameter groups reflecting the spatial variability of the hydrologic properties along
different pathways. Figure 1 illustrates the results of two conceptual variants of a
discrete fracture network hydrology site model. Each data point represents the
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effective transport properties corresponding to the flow and transport paths from a
single canister location. The encircled areas indicate the spatial variability associated
with respective model variant.

It is necessary to reduce the number of parameter combinations further transferred
to the radionuclide transport calculations, as they treat more than 30 nuclides and
coupled near-field and far-field. The use of sensitivity analyses with simplified source
terms for near-field and far-field separated, give aid in selecting calculation cases for
the coupled analysis with the full source term.

Sensitivity analysis for the near-field

The sensitivity analysis for the near-field (waste-form, bentonite buffer and the rock
surrounding the canister site) was performed with a simplified source term, consisting
of 1 mole of a hypothetical, stable nuclide, released instantaneously from the fuel. In
the analysis, hydrological parameters (e.g. near-field rock Darcy velocity and flow
wetted surface) and chemical parameters (distribution coefficients for sorption and
solubility limits) were varied.

The results from the sensitivity analysis show that the release rate is insensitive to
model parameters above or below certain levels. The most obvious example is the
Darcy velocity. For high Darcy velocity release from the near-field will be controlled
by diffusion through the bentonite buffer, hence a further increase of Darcy velocity
or changes of flow wetted surface will not affect the release rate. For medium and
small Darcy velocities, increasing flow wetted surface in the near-field rock decrease
the release rates. In these cases, changes in sorption distribution coefficients also
have significant effect on the releases.

Sensitivity analysis for the far-field

The source term for the sensitivity analysis for far-field consisted of a delta
function, i.e. an instantaneous release of 1 mole of a stable nuclide. The intention with
these sensitivity calculations was to verify that the selected far-field parameter groups
(F-ratio and Pe-number) can be used as hydrological performance measures for the
radionuclide transport.

Different combinations of the F-ratio and Peclet number as well as different
combinations of the individual hydrological input parameters a, q and D_ were
analysed. The calculated peak release and time of occurrence were not affected by
variations of the input parameters as long as the F-ratio and Peclet number were held
constant. The peak release rates indicated a strong dependence on the F-ratio, with
decreasing release rates with increasing F-ratio. The Peclet number affected the
transport results to a lesser extent (high Peclet numbers give lower peak release rate).

Integrated near-field and far-field calculations

The full source term consists of the inventory of radionuclides, with different decay
rates, some of them coupled in chains and with different release rates from the fuel.
In the coupled calculations the output from the near-field calculations (time series of
flux in Bg/year for each nuclide) is the input for the far-field calculations.

Sets of hydrological parameter values were selected from the "F-ratio/Peclet number
space” (data points in Figure 1) to form calculation cases for the integrated analysis
of radionuclide transport. Other uncertainties e.g. in geochemistry were treated with
sets of parameter values. When selecting the parameter sets the results from the
sensitivity analysis were used to reduce the number of calculation cases, and thereby
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avoiding calculations that would most probably give the same result. When defining
calculation cases for the integrated analysis correlations were taken into account to
avoid combinations of near-field and far-field parameters that are inconsistent with
data.

Results of integrated analysis

The integrated results comprised release of nuclides from the far-field. The
integrated analysis of the radionuclide transport show that the total dose rate (i.e.
summed over all nuclides) is totally dominated by release of I-129 in early times (10°-
10° years), and that the release of I-129 is almost insensitive to parameter variations.
Which nuclide(s) that contributes most to the total release rate at later times (10°-10°
years) depends on the chemical and hydrological parameter values.

One of the main chemical uncertainties concerns the redox conditions in the near-
field, and had a significant effect on releases. The high uncertainty and spatial
variability of the estimated near-field Darcy velocity had a more limited effect.
However, the relative importance of these uncertainties are nuclide specific.

Figure 2 illustrates the far-field release of Ra-226 for a reference near-field
parameter set up, as a function of the far-field parameter uncertainty predicted by the
hydrological site models. The far-field performance covers a very large span, from
retarding most nuclides (high F-ratio) to releasing most of the input from the near-field
(low F-ratio). These results underscore that spatial variability and model uncertainties
have a significant impact on repository performance and on the relative importance
of the near-field and far-field barriers.
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Figure 1. Far-field performance measure Figure 2. Sensitivity of far-field release as
predicted by hydrological site models. a function of hydrological parameter
uncertainty.
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Joint CEC/USNRC Post Processing for
Uncertainty Analysis
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June 29, 1995

To estimate the risks and consequences of hypothetical nuclear accidents, the
Commission of European Communities (CEC) and the United States Nuclear
Regulatory Commission (USNRC) separately developed Probabilistic Accident
Consequence Codes (PACC), COSYMA and MACCS, respectively. Since many
code parameters are uncertain, these organisations decided jointly to establish a
methodology and provide a base of information in order to perform uncertainty
analysis on the calculations of PACC.

Since the available data is sparse and as both organisations wanted to allow
for a diversity of viewpoints, formal expert judgement elicitation was used to
quantify the uncertainty. The goal of expert judgement is to encode degree of
beliefs into probability distributions. When subjective probability is recalled to
its original meaning, it can only be used to measure an individual’s degree of
belief regarding outcomes of possible observations. Consequently, in this joint
effort experts are only asked about physically observable quantities with which
they are familiar. Variables which are physically observable and for which the
expert has to provide information will be called query variables. Code parameters
which uncertainty must be quantified in order to perform the uncertainty analysis
are called target variables. Target variables may be query variables, but it can
also arise that target variables are unsuitable as query variables, since they do
not correspond to measurements which the experts can estimate.

Two examples from the joint project illustrate the distinction between query
variables and target variables.

Example 1 The lateral plume spread o, is modelled in the codes as a power law
oy(e) = Ay (1)

where z represents the distance from the source and Ay and By are the
target variables for the code. Experts have little feeling for the behaviour
of Ay and By; indeed the physical dimension of Ay must be [met.ers]l‘BY.
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For this reason it was decided to elicit the experts over o, as this is a quan-
tity which is measured repeatedly and with which the experts are familiar.
Asking for the lateral plumespread means that the uncertainty analyst has
to develop a method for determining a distribution on the code parameters

Ay and By.

Example 2 The migration of radioactive material through various depths of soil
is modelled using a so-called box model, see Figure 1. The target variables

0-1cm 1-5cm 5-15 cm- 15-30 cm >30cm

ke
Figure 1: Boa-model of soil-migration

for the code are transfer coefficients k;;, which represent the proportion
of material moved from box 7 to box j in a small time interval. Based
on Figure 1, a set of first order differential equations can be constructed
which, with the appropriate initial conditions, fully specifies the movement
of the material between the boxes. The aim is to derive a distribution on all
transfer coefficients. Transfer coefficients cannot be measured directly and
therefore cannot be query variables. In this case the query variables were
on times T; when half of the mass of the deposited material has past beyond
box 7. From this information a distribution on the transfer coefficients has
to be determined.

The determination of a distribution on the various target variables (Ay, By
or transfer coefficients), given information on query variables (o, or T;) is called
post processing. For the first example a post processing technique has been
developed, which is described in detail in [1], [2] and [3]. However this post
processing technique is impractical in cases with the complexity comparable to
that of the second example.

In this paper we will introduce a more powerful post processing technique. For
purposes of illustration we describe the technique for the first example. Starting
distributions are assigned to the target variables Ay and By . These distributions
are propagated through the the power law (1) for distances zi,...,z, from the
source. This will generate a joint distribution F(oy(zy),...,0,(2,)). The expert
has assessed the marginal distributions Gi(o,(21)),. .., Gn(oy(,)). We now find
the distribution [* having minimum information with respect to /* and having
marginals which agree with Gi(a(2y)),...,Gu(0(2,)). The joint distribution
(Ay, By) is extracted from the distribution [,

We will compare the two post-processing techniques for data [rom the first
phase of the joint effort. The two post-processing schemes treat the information of
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the expert in different ways. It is therefore interesting to investigate the sensitivity
of the submodel outcomes with respect to the choice of post-processing technique.
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SENSITIVITY STUDIES OF AIR SCATTERED
NEUTRON DOSE FROM PARTICLE
ACCELERATORS
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Introduction

Increasing use of high current accelerators in densely populated locations for
research and industrial purposes necessiates optimal design of overhead shields,
thus requiring a sensitivity analysis of air scattered dose with respect to the
effective parameters. We have carried out the senstivity analysis of the cal-
culated air scattered neutron dose from a particle accelerator using the Re-
sponse Surface Methodology(RSM). RSM has been chosen basically because
this technique is widely used for sensitivity analysis of nuclear-safety related
problems(1).In this approach a small subset of the system parameters after
screening is first chosen for the study. Specific changes to be made in this
data to address senstivity and uncertainity questions are thus derived from
variety of experimental design theories(2,3). Initial sensitivity screening res-
ults(4) indicate that the overhead shield of the accelerator is the most sensitive
parameter, followed by the high energy part of the source neutron spectra.
The distance of the neutron source from the overhead sheild being the least
significant has been removed from the parameter list. Source neutron spec-
tra has been computed using two well known Nuclear Reaction models.The
estimated distributions(high energy part) from the models PRECO-D2 and
ALICE differ considerably necessiating quantification of the difference between
the models. To overcome this difficulty we have binned the energy distribution
in 5 groups,each group representing a parameter in the sensitivity analysis.
Hence, in our study we have chosen six parameters, and performed sensitivity
analysis with several experimental designs, a full 2® factorial design and other
composite designs like Orthogonal Central Composite Design(OCCD), and a
full 3° factorial design. We have found in this study that the contribution of the
second order effects to the total variance is not significant and, hence OCCD
and 3% are not necessary for the present analysis. Since ours is a computational
experiment, measurement and observational errors are absent and the RSM,
with the advantage of separating the statistical analysis from the modelling
problem, detects the basic variability in the system. We have obtained sensit-
ivity coeflicients by expanding the response surface by a multivariate Taylor’s
series and incorporating the least square criterion of minimum error. We illus-
trate the successful use of the RSM in studying the behaviour of the sensitivity
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coefficients of air scattered neutron dose at a distance from the accelerator with
neutron emissions from 50 and 60 MeV « projectiles interacting with a thick
Tantallum(Ta) target.
Method of Calculation
Let D(r;t, E;) be the neutron skyshine dose at a distance r meters from the
accelerator, with t meters of overhead shield made of concrete, E; being the
energy distribution of the source neutrons(5) (j = 1...5).
We define

D(r;a) = D(r;t, E;) (1)

where & = (t, E;) for j = 1...5 and reponse as

D(r; &) - D{r: i)
D(ria) 4

R; =

for j = 1...5 where the index i is the number of design points chosen according
to RSM and ap is the nominal vector around which 1% of perturbation is
carried out. Using the overhead shield and five energy groups as parameters
we have used a full six factor design (2%). We define the response surface as

R =3 fiai+ ) Bijai; (3)
=1 i=1

=1

where a; = t,a; = FEi,a3 = Ey,a4 = FE3,a5 = F4,a6 = Fs, f; = main ef-
fects, f;; = interaction effects. We have neglected the higher order terms.
We have obtained the sensitivity coefficients ie.,main effects and interaction
effects of the parameter set by expanding the response surface by multivari-
ate Taylor’s series and incorporating the least square criterion of minimum
error. In order to investigate the contribution of second order effects to the
total variance we have studied a full 3% factorial design. Because of the pro-
hibitive computational time required(3® = 729 treatment combinations) for
such a calculation we have also considered an Orthogonal Central Composite
Design(OCCD) which is more efficient and less time consuming. For ¢ control-
lable variables OCCD can be constructed by taking 2¢ points with co-ordinates
(£«,0,0,0,0,0),(0,+«,0,0,0,0),...,(0,0,0,0,0, +c) and to these add the 27
points (£83,+0...,£0). The constants & and (3 are chosen such that /g =
27/4. In our case we have taken $=1 and for ¢=6 controllable variables we get
a=1.682. We have obtained sensitivity coefficients (3;, 3;; for a nominal vector
(2.0m, Ey, Es, E3, E4, Es5) for 50 and 60 MeV « induced thick target neutron
source distribution, both for experimentally measured and theoretically calcu-
lated using PRECO-D2 and ALICE.

Results and Discussions
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The results indicate that the overhead shield is the most sensitive parameter
then the high energy part of the source neutron distribution followed by the
interaction term of the above two. Among the main effects for parameters
(E;,j=1...5) of the source neutron spectra, highest energy parameter of the
source neutron distribution is most sensitive when compared with the other
parameters. Also in case of interaction effects the interaction of overhead shield
with the highest energy parameter is most sensitive when compared with the
other interaction effects. These two cases demonstrate the ability of the RSM in
quantifying the otherwise intutively known results. The sensitivity coeflicients
obtained with theoretical model PRECO-D2 has shown more variation than
ALICE when compared with the data obtained using experimentally mesured
source neutron distributions. This is due to the fact that both the theoretical
models underpredict the source neutron spectra particularly the high energy
portion.Hence our generated reponse which has quantified the inherent differ-
ences of the theoretical models when compared to experimental data, can be
utilised in suitable modification to closely simulate the experimental situation.
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The differential operator sampling technique has emerged as a very powerful tool in sensi-
tivity analysis and has found typical applications in parameter estimation and parameter optimi-
sation. Here we describe a new algorithm for constructing self-optimizing non-analog Monte
Carlo simulations based on the differential operator sampling technique. Non-analog simulations
are designed to reduce statistical errors (variances) associated with the scores (results) by intro-
ducing in the physical simulation certain artifacts. Effective implementation of such variance
reducing schemes requires knowledge of optimal values of some parameters (biasing parame-
ters), not known 'a priori'.

Based on the concept of differential operator sampling (1 to 7) it is now possible to differ-
entiate with respect to those biasing parameters which aim at minimizing the variance in a non-
analogue game. In this case we differentiate the second moment of the score with respect to the
biasing parameters and extrapolate its dependence of the variance by a multi-variate Taylor
series. This requires in most cases the determination of higher-order derivatives to obtain a rea-
sonable approximation of the curve or surface containing the minimum. Our algorithm based on
the multivariate Taylor expansion in terms of the first and higher order derivatives of natural
logarithm of the second moment around the score in a non-analog Monte Carlo simulation, pre-
dicts the optimal biasing parameters corresponding to the minimum variance simulation. We
have found that stochastic simulation processes incorporating our algorithm have the same transi-
tion kernels as those of the original simulation thus allowing the derivatives to be sampled from
the same random walk. An iterative procedure incorporating such simulations and a feedback of
information renders eventually the optimal biasing parameters. Numerical experiments have
shown that the present technique finds the optima even in the cases of high statistical uncertainty,
i.e., with a very few histories in a simulation. We illustrate the application in a slab transmission
problem that utilizes the exponential transform as a variance reducing scheme in a non-analog
Monte Carlo simulation.

As an illustrative example and a test we have considered the non-analog Monte Carlo ran-
dom walk simulations of particle transmission through semi-infinite homogeneous slabs of dif-
ferent thicknesses (7 to 10). The simulations use the exponential transform as a variance reduc-
tion technique in a one-group isotropic scattering model. A plane parallel beam of particles is
incident on one surface of the slab. Transmission through the other side of the slab is scored. The
particles enter the slab with unit weight and after each collision their weight is modified by a
multiplicative factor proportional to the survival probability: p; = o,/ o, (with: o, and o, being the
macroscopic scattering and total reaction cross sections). The other modifying factor is intro-
duced by the biased transport kernel T(x, x', 4, @) = o,* exp[- o,(x"-x) ] /| ¢ |, where x and u are
space and direction coordinates, respectively, and o, = o, (I- ua) is a biased reaction cross
section modified by the direction cosine # and the biasing parameter a, obeying the condition
0< a<]. We now calculate the first and higher-order derivatives of the second moment of the
fluence ( leaving the slab at d ) with respect to a for a given value «;, (which in most cases is
assumed to be zero). For a Taylor expansion around F(a) = Inf{M; (a)] we get
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(Aa)' a'

Flay + Ada) = F(a,) + AaiF(aa) +

(Aa) &
da da’

F (@) + F (ag) +.
To find the a-value for which the second moment (~variance) has a minimum we differentiate
with respect to da

B BN SpTR. ﬂ—nao) —

da

B(A a)

Now, the value of Aa which gives the minimum variance, can be approximated by solving the
equation

B(A )F(a(, + Ada) =

which yields

7 2 - -1
Ao = {— aa;z Flay) t\/< 4 F(ao)) = Z(a—F(ao) F(ao)) ] : l:%[:(ao)]

With the help of the above equations one can estimate the value of a+da that will render a
minimum-variance simulation.

In Table I we list results for transmissions through slabs of thickness 10 and 20 mean-free-
paths (mfp in units of o,, respectively) and a scattering probability of 0.9. The results were
obtained as averages over 200,000 histories for each value of the biasing parameter a. In each
case we start out with an @y =0 and determine a+Ada. With this value the calculation is repeated
until da < 0.01. As is expected, the mean value for the fluence remains unchanged (allowing for
statistical fluctuations), except for 20 mfp where the statistical fluctuations predominate. The
second moment and the variance decreases with increasing a, reaches a minimum and then
increases. The minimum in the variance is obtained for values a between 0.4 and 0.5 for p. = 0.9
and close to 0.6 for p.= 0.8 (not shown in the Table), irrespective of the thickness of the slab.
These trends are in agreement with previous results (7) obtained for similar problems using
deterministic estimates. It is also observed that overbiasing to a large extent leads to a higher
variance compared to underbiasing. For example, a = (.9 produces a larger variance than a =0
(no biasing) for pg= 0.9 for all slab thicknesses. The number of flights per history increases
slightly with increasing a and then decreases. The trend remains the same for all slab thicknesses
and scattering probabilities. This behaviour is expected as the exponential transform essentially
decreases the modified cross section o,%, in the directiong of >0 (forward direction) and in-
creases for y < 0 (backward direction).

It can be seen that the prediction at & =0 is very good for small thicknesses, deteriorating
with increasing thickness, nevertheless pointing to the right direction and improving with a get-
ting closer to its optimum value. The prediction is also poor when the system is overbsiased. This
may be attributed to the fact that the sample variance is not a true indicator of the population
variance (6, 8). Now, if we look at the values of F’, F” and F'”, we can see that the values of F"
are large compared to those of F* and F”. This is particularly so, when the value of (a+da) gives
a poor estimate of the optimum. It is thus implied that for a more accurate prediction one has to
consider more terms (i.e. higher order derivatives). Nevertheless, based on the algorithm de-
scribed in this paper, one can design a self-learning scheme without any ad hoc assumptions or
empirical formulations. Starting from an unbiased situation such a scheme will find the optimum
with very few iterations.
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Slab Thickness = 10 mfp Slab Thickness = 20 mfp
Iteration a Aa Iteration a da
0 0.000 +0.573 0 +0.000 +0457
1 0.573 —0.183 1 0457 +0.006
2 0.390 +0.053
3 0.443 +0.003

Table 1. Example of an an iteration approach rendering optimal a-values (biasing
factors) for two typical particle deep penetration calculations applying the
exponential transform algorithm.

Conclusions: This paper illustrates the application of differential operator sampling in develop-
ing a new technique to estimate optimal biasing parameters in non-analog Monte Carlo simula-
tions. Although the test problems involve only the exponential transform as a variance reducing
technique, the present scheme can be extended to a wide variety of non-analog simulations
including weight dependent games. The overall methodology and application provide a well
defined approach to estimate optimal biasing parameters to ensure rapid convergence in self-
learning Monte Carlo simulations.
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UNCERTAINTY ANALYSIS FOR SOME ACTINIDES AT GROUNDWATER CONDITIONS

C. Ekberg and I. Lundén-Burd,
Department of Nuclear Chemistry, Chalmers University of Technology, S-412 96 Géteborg,
Sweden

Introduction

Computer calculations are used for many different purposes and important decisions
may be influenced by their result. Therefore it is important to know how reliable the
results are. The source for the uncertainties in the result may depend on several factors
such as pure miscalculations, incomplete understanding of the simulated process and
uncertainties in the indata to the program [1]. In the last case the effects may be
detected with some numerical uncertainty/sensitivity analysis technique. Several such
techniques exist [2, 3], but the work presented here is focused on the application of
simple Monte Carlo (MC) sampling. This technique may be favoured for several
reasons, e.g. it is easy to use if the number of variables is great and it is easy to
perform. Unfortunately it may be difficult to make a sensitivity analysis from the result of
a MC sampling of many variables. Therefore the approach adopted makes the analysis
in three steps. First a preliminary sensitivity analysis, secondly an uncertainty analysis
and thirdly, a stepwise regression based on the result of the uncertainty calculations.

Method

The uncertainty and sensitivity calculations presented in this paper are made with the
SENVAR package [4]. The factors included in the analysis are stability- and solubility
constants, pH, pe and temperature. The solubility calculations are performed with the
thermodynamical equilibrium program PHREEQE [5] and database [6,7]. As aqueous
phase a reference water from the Aspé site, was used [8,9].

At least two hundred variables are usually needed for a realistic calculation in a
natural water. Therefore a preliminary sensitivity analysis is necessary to start with. The
most important factors from that analysis is transferred to the uncertainty analysis where
also a stepwise regression is made.

Sensitivity analysis

In the sensitivity analysis one factor is kept constant for a given number of solubility
calculations. The variance in the results is the calculated. This value is then divided with
the corresponding mean solubility in order to normalise it. These steps are repeated for
every factor concerned. The factor that gives the smallest normalised variance is
deemed the most important and so on. This ordinary method is modified so that in the
beginning of the sensitivity analysis ,a random matrix is made. This matrix has one row
for each factor and one column for each sub iteration, i.e. the number of iterations when
one factor is fixed. Therefore the factors that are not held fixed, will change their values
according to pre-set values. Such an approach will give the unimportant factors similar
variances and thus make the selection criterion more simple, e.g. not to include factors,
which variance has changed less than 1/1000 of the last accepted one, in the
uncertainty analysis.

The ranking obtained with this method is only preliminary and somewhat
sensitive to the choice of seed to the randomiser function, since the number of iterations
is too small to erase such a dependence. However, the most important species are
always present.
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Uncertainty analysis
The base for the uncertainty analysis is Monte Carlo sampling of the selected factors
within each uniformly distributed interval. The uniformity is selected in order not to
impose normality on the results.

The results are evaluated in a common way, i.e. statistical estimators such as
mean solubility, variance, confidence interval for the mean and confidence interval for
the solubility population are calculated. In addition to that an empirical frequency
function is plotted.

The solubilities obtained in the uncertainty calculations are also used for a
stepwise regression analysis. From that analysis the final sensitivity analysis is made.
Usually there is good agreement between the preliminary and final sensitivity analysis,
thus making the credibility of the calculations good.

Results

Table | shows the mean solubility, the confidence interval, the largest and the smallest
solubility together with the most important parameters for Pu(OH),(s). The empirical
distribution frequency for the calculation presented here are shown in Figure .

50
Table I. Uncertainty result for Pu(OH),(s).
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Figure |, The empirical distribution u

frequency for: Pu(OH)s)

The parameters listed in Table | are the ones for which uncertainties in their
thermodynamical data will afflict the calculated solubilities the most. The calculated
solubilities in Table | fall within the expected range, but expected aqueous species
should be Pu(OH), (oxidising conditions) and Pu*, PuOH>, PuCO,’(reducing conditions)
[10]. This shows that the chemically important species not always are those that are the
species for those uncertainties in the thermodynamic data are of importance to the
calculated result.

The above given results will be further discussed in the full paper together with
calculations on U, Np, Th, and Am.

Conclusions

Results in this study shows that the parameters of importance as a result of S/U-
analysis will not necessarily coincide with the species of chemical importance.
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Uncertainty and sensitivity analysis can be used to give information about

parameters of importance in a given system.

This can be used in the Safety analysis for storages of hazardous substances to

show which parameters needs to be checked for errors or eliminated their importance.
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DETERMINATION OF THE UNCERTAINTIES OF THE INPUT
PARAMETERS AND SENSITIVITY ANALYSIS IN THE CATHARE 2
CODE
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85X 38041 Grenoble Cedex, France
Tel : (33)7- 8843 59 or (33) 76 88 35 93, Fax : (33) 76 88 51 77

1. Introduction

1.1 Purpose of the paper

This paper presents a methodology for determining the uncertainties of input pa-
rameters for French safety code Cathare 2. The input parameters considered here are the
ones that cannot be measured directly in facilities, that is to say the constitutive rela-
tionships (also known as correlations). On account of this feature it is difficult to calculate
their uncertainty.

1.2 Presentation of the Cathare 2 code

Cathare 2 (1) is a best-estimate thermal-hydraulics code, which calculates the
consequences of a loss-of-coolant-accident in a nuclear power plant. It was developed by
EdF (the French utility), Framatome (the French vendor) and CEA-IPSN (the safety autho-

rity).

1.3 A part of a global strategy

The issues presented in this paper are a part of a global strategy, the aim of which
is the calculation of the uncertainties of the code predictions. For this, a powerful tool is
used: the DASM (discrete adjoint sensitivity method), which calculates, at a low CPU-cost,
the derivatives of any output parameter with respect to as many input parameters as re-
quired (2).

2. Presentation of the methodology

2.1 Some mathematical definitions and notations

o definition of the input parameters

Let CR be a constitutive relationship, which is an analytical expression of the main
variables (pressure,enthalpies, void fraction, velocities,etc.). We denote € the input para-
meter associated to this correlation and defined by: CR = exCR ominal- S0 the nominal va-
lue of eis 1. We are looking for the uncertainty of € instead of that of CR.

o definition of the uncertainties of the parameters

Precisely, the uncertainties relative to a set of correlations are defined with the co-
variance matrix of the associated parameters. This matrix is denoted as C. It must be po-
sitive definite, i.e. with more than 0 eigen values.

2.2 Setting up of the problem

Let us consider a set of correlations, with their associated parameters g, k=1,d.
Separate- effect -test facilities, a priori sensitive to these correlations, are used. They are
the facilities used for assessing or establishing the correlations. For each of them, the re-
sults sensitive to the set of correlations are considered: they are called responses and de-
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noted as Ry, j=1,n.
We write for a response R;, at the first order:

% = Rj, code "R, exp =(R J-codc'RJ‘,lm¢)+(Ri'"ue_Ri'°"P) o
. = T 2
thatis to say: ¥; = 7; (ej,nominal_ej) e (2)

where €] is related to the experimental uncertainty. Its distribution is assumed to be normal:
~ N(0.6). o? is known.

T JR JdR
and Yj =13 " 3¢, is the d-vector given by the DASM.
1 d

g is the d-vector of the optimal values of the d parameters when considering the R res-
ponse. It is unknown.

Let us consider the set of n responses Rj, j=1,n. The n (g ,.....,4) vectors are a
sample of e=(gy,....e4). We assume that £ has a normal distribution, the parameters of
which (mean vector and covariance matrix) are unknown. Particularly, the covariance ma-
trix is the unknown C matrix.

The problem is that the g n-sample is unknown: it is only indirectly given by the y;
n-sample. So the problem is as follows: determine the covariance matrix of € = (gq,...,Eq),
knowing only the y; n-sample, j=1,n.

2.3 The methodology
It comes from (3 ). Itis an iterative algorithm with two steps at each iteration. Let
c® be the covariance matrix of € at the it" iteration. Then the C*1) covariance matrix is
obtained as follows:
e expectation step (E-step): for one response R;, it gives the parameters (mean
vector and covariance matrix) of the normal distribution of g;, after observation of y; (a pos-
teriori distribution). For this, we use Bayes' theorem on conditional probabilities. We have

(i),  T~(1)
@ Y @_C % C

Y, s - 3
J‘YTC(I)'Y +0' 2 'YJT (I)Y +6-'2

(1)y Nl ¢

(i) (i+1)
the mean vector is denoted as €~ and the covariance matrix as C;
e maximization step (M-stép): it uses the principle of maximum Ilkehhood an

estimation of C+1) is 2 €. (l)T .

j =1
Knowing that the expected value of g7 is:

E(E(i)e(i)T) _ ’E-(')’e‘-(')T+Cj(i+ 1)

i j & (4)
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we obtain the following relationship between C*" and C® :*

@, T 2
@+0 _ o, 15 C € Yj
c* o . : -1 (5)
n TeWDy 462 v TcPy 402
IRV AR AN R A

Each iteration of the algorithm increases the likelihood of the g; sample. The con-
vergence is monotonic and rather rapid. The obtained C matrix is always positive definite.

3. Application to three parameters

3.1 The results

The three considered parameters are

e €4: relative to liquid-interface heat exchange (interface between vapour and li-
quid phases)

e & relative to friction between vapour and liquid phases

o £5: relative to wall-liquid friction

Three analytical experiments are chosen for calculating the covariance matrix of
these parameters. One parameter is relevant for each experiment. Its standard deviation
is calculated by considering only the corresponding experiment. We find:

Oy = 1,18, 62 = 0,80, 6,3= 0,17
When considering the three parameters and the three facilities together, the C matrix is:

1,42 -0,26 -0, 13
C=1-0,26 0,61 0,03
-0,13 0,03 0,01

corresponding to the standard deviations 6.1 = 1,19, 6,5 = 0,78, 6.3= 0,11 and to the cor-
relation coefficients p4o = -0,28, po3 =0,37 , p31 =-0,25.

3.2 Comments

The results for the standard deviations are close to those obtained by considering
only one parameter and one facility. It means that considering experiments where a para-
meter is not relevant , does not modify its standard deviation. So later, it will be possible
to consider together the set of all the correlations of the code with all the corresponding
facilities.

Moreover two items were checked for this study:

i) if any one response is suppressed, the results are always very close: the results
have converged with respect to the number of responses.

ii) the results are not sensitive to the number of responses per facility, if, neverthe-
less, this number is high enough.
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MayDay. A Code to Perform Uncertainty and Sensitivity Analysis.

An application to I"™ in PSACOIN Level E exercise.
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ABSTRACT

1.- INTRODUCTION

During the Tast months a software tool has been developed at the Catedra
de Tecnologia Nuclear of the Universidad Politécnica de Madrid (CTN-UPM) to
perform Uncertainty and Sensitivity Analysis (UA-SA) on computer models, in
the framework of a probabilistic approach to Performance Assessment of Nuclear
Waste Repositories. Nevertheless this tool is intended to be useful for any
kind of computer model that tackles a problem from a probabilistic point of
view. MayDay implements the most common and well-known UA and SA techniques
in a user-friendly environment. As a first test case for this tool the study
of doses due to I™° in the PSACOIN Level E exercise has been considered. This
study has been specially focused on SA.

2.- MayDay AS A SOFTWARE AND STATISTICAL TOOL

MayDay has been developed as an interactive tool through which the user
selects the variable or variables and the type of analysis he wants to
perform. Interactivity is achieved throgh a graphic user interface, X/Windows
under Motif, and a carefully designed core that optimizes runtime and CPU
resources. MayDay has been developed mainly in C, though there are also some
calculation modules in FORTRAN77. MayDay has been developed, in its first
version, for a 64 bits DEC a/AXP under osf/1 3.0 (DEC UNIX). The most general
environment for MayDay is a local network in which several computers under
DOS/Windows, MAC/0S, UNIX or MVS may run the program simultaneously in the DEC
a/AXP.The data from probabilistic simulations from any code are written to a
binary file specially designed to contain all important information about the
simulations. The data from that file are read as they are needed in the work
sesion so that execution speed is highly increased.

MayDay, as a UA tool to study samples, includes general statistics (mean
and its possible confidence intervals, variance, geometric mean....), order
statistics with their confidence intervals, it also includes histograms and
empirical distribution functions with the Kolmogorov confidence band.
Kolmogorov, chi-square and Lilliefors tests are included to check the fit of
samples to sampled distributions. The Shapiro-Wilk test is also included to
check sample mean convergence to the normal distribution.

Mayday. as an SA tool, includes techniques to study the sensitivity of
a single output variable to a single input variable, 1ike the statistics of
Pearson and Spearman (related to simple Tinear regression), and the statistics
of Mann-Whitney, Smirnov, Cramer-Von Mises, t, Kruskal-Wallis, and the Smirnov
test for k subsamples, among others. MayDay allows also to see the sample of
any variable ordered according to the run number or according to the ranks of
the observations. It also includes techniques to study the sensitivity of one
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single output variable to several input variables like the statistics related
to standardized linear regression (PCC,SRC,PRCC and SRRC), the sensitivity
measures considered in the Fourier Amplitude Sensitivity Test (FAST), and the
estimators developed at the CTN-UPM to measure the change in the means and
variances of output variables associated to changes in the distribution of
input variables. Scatter plots and contribution to the mean plots are also
included. Finally, several tools are implemented for the application of
variance reduction techniques: Stratified proportional random sampling,
stratified optimal random sampling, LHS, and importance sampling.

3.- THE STUDY OF I'® IN THE PSACOIN LEVEL E EXERCISE.

The PSACOIN Tevel E exercise has been selected to perform a first study
with MayDay. This is a widely knowm problem suggested in the PSAC of NEA/OECD.
This problem has been simplified so that only one radionuclide, I'?®, has
been considered. It is assumed that a dimensionless repository with an
inventory of I'*® begins to release the contaminant at a constant fractional
rate, RELRI (a™), after a time, CONTIME (a), in which no release happens. The
contaminant is transported by groundwater through two consecutive geosphere
layers with lengths PATHL1 (m) and PATHL2 (m), and retardation coefficients
RETF1I (-) and RETF2I (-). at constant velocities FLOWV1 (m-a') and FLOWV2
(m-a'). The contaminant leaving the second geosphere layer enters a stream
with a given volumetric flow, STFLOW (m®-a™), from which the critical group
obtains drinking water. The specific equations of this problem, as well as the
distributions of the nine uncertain input variables involved, may be found in
reference /1/. The output variables studied are the doses at six specific time
points (1.E+4, 2.E+4, 5.E+4, 1.E+5, 2.E+5, and 5.E+5 a), DOENTI(0i) -
i=1,..., 6 - (Sv-a'), the maximum dose up to those time points, MAXDSI(0i) -
=1, e 6 - (Sv-a'), the maximum dose in the whole simulation period,
DOSMAX(01), and the time point in which that maximum happened, TDOSMAX(01).

The problem was solved with the Laplace transform algorithm developed by
Robinson and Hodgkinson /2/ and implemented in SYVAC3. A 100 observation
random sample was obtained, and doses below 1.E-15 Sv-a™ were set to 0. The
first task that was developed was to check the input data that were used in
the simulation. Two types of analyses were done: To check if the data fitted
the distributions they were sampled from, and to check the independence
hypothesis between the seven samples. To perform the first analysis, the
Kolmogorov test was applied to each sample. Significative departures from the
sampled distributions were found in the case of FLOWV1 and RETF1I, with
respective critical levels of 0.014 and 0.02. The probability of this
situation is approximately 0.063. To perform the second type of analysis
Pearson and Spearman tests were applied to the 36 possible nontrivial couples
of input variables. RETF2I and STFLOW showed slightly significative degrees
of correlation in the raw values and in the ranks (0.243 and 0.23), moreover,
RELRI and STFLOW showed a slightly significative correlation coefficient in
the ranks (-0.234). The probabilities of two spureous correlations in the
ranks and one in the raw values are about 0.275 and 0.3. As a conclusion of
these studies it was concluded that the samples are not the best that could
be obtained, but there is not evidence enough to say that they were generated
under hypothesis different from those postulated.

Although a large work has been done in the characterization of all the
output variables, only the main features will be shown in this abstract. The
fractions of null doses were never below 29%, and the non-null part of those
doses spread though several orders of magnitude (8 - 9). Another important
conclusion of the UA is that, in this case, to work with a sample of 100
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observations is to be far from convergence in the study of several output
variables. A clear convergence of the series of variables MAXDSI(0i) to
DOSMAX(01) as time increases was also detected, as expected. An important
result is obtained when studying the relationships among those variables. Very
strong correlations in the raw values were found among DOSMAX(01),MAXDSI(06)
and MAXDSI(05). The correlation with MAXDSI(02) falls to about 0.5, and
MAXDSI(01) is only slightly correlated (0.30) with MAXDSI(02). Nevertheless,
when the Mann-Whitney statistic is applied, it is observed that the non-null
part of MAXDSI(01) is related to the highest values of MAXDSI(0i) - i=2,..., 6
- and DOSMAX(01). In other words, runs that produce non-null doses up to 1.E+4
a produced maximum doses up to posterior time points among the highest, which
means that an important fraction of the highest maximum doses happened at
early times. The study of the empirical distribution functions of these
variables shows also the existence of a clear cut point about 1.E-9 Sv-a
that divides the populations of these variables in two subpopulations: that
in which the maximum dose has happened and that in which that value has not
been reached. The latter region spreads through six orders of magnitude. while
the former spreads through only three and a half orders of magnitude.

MayDay 1.0 MayDoy 1.0
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Figures 1 and 2.- Empirical distribution functions for maximum doses up
to 2.E£+5 and 5.E+5 a.

Due to their specific interest, only the results related to standardized
linear regression and to FAST will be here reproduced. When regression
techniques are applied on the raw values, no good result is obtained, with
coefficients of determination below 0.41 in all the cases. Those values are
Tow enough to consider useless any further analysis. Results are quite better
when variables are transformed to their ranks (so that monotonic relationships
are studied). In the case of the doses at the six time points studied, it may
be shown that the process is totally controled by the parameters that
characterize the transEOFt through the first geosphere layer, specially
FLOWV1. In the case of the maximum doses up to the six time points considered,
the process is controled by the same variables; nevertheless, at about 1.E+5
a, STFLOW's importance begins to grow, and at 5.E+5 a it is the most important
variable. The reason for that growing importance with time is the increasing
fraction of observations in the subpopulation with the highest values. In
order to apply the FAST technique, it was necessary to run the simulation code
323 times with the inputs needed by this technique. Only two variables were
identified as important by FAST: FLOWV1 and STFLOW. Both in the case of doses
at time points and in the case of maximum doses up to those time points,
FLOWV1 was more important at early times, while STFLOW was more important at
late times.
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SENSITIVITY, UNCERTAINTY, AND DECISION ANALYSES IN THE
PRIORITIZATION OF RESEARCH

Stephen C. Hora
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Introduction

The objective of this paper is to describe the role that decision analysis can play in
directing the data gathering efforts and design considerations related to complex
technical systems. Decision analysis can be used in conjunction with established
system models and with other analytic techniques including sensitivity and uncertainty
analyses.

Sensitivity analysis refers to techniques that provide measures of the changes in the
output of a model that are attributable to changes in the inputs. Often the measures
are in relative terms such as percentage change in the output divided by a percentage
change in an input or inputs. Such measures may be conditional of the values of
other inputs or they may be averaged or integrated over a range of values. Sensitivity
methods can be applied to both deterministic and probabilistic models such as those
used in probabilistic safety assessment.

Uncertainty analysis provides measures of the uncertainty in output that are
attributable to the uncertainty in the inputs. In is applicable to probabilistic models and
to deterministic models that are exercised in a probabilistic manner. Measures of
uncertainty importance are somewhat more difficult to conceptualize than sensitivity
measures. One example of such a measure is the correlation ratio which measures
the expected reduction in the variance of the output variable if an input variable’s value
true value could be determined to be some fixed but unknown value. Such a measure
is dependent on both the model and the choice of input distributions.

Decision analysis provides measures of the benefits that can potentially be achieved
by making changes to the systems (changes that are reflected in changes in the
model) and/or changes to the input distributions to the model. For example, one could
change the a nuclear power system by the addition of redundant diesel generator. By
applying value measures to the model output both with and without the design
modification, a decision can be reached on the worth of the modification. A more
complex application is to the value of gathering date that will refine knowledge about
the system’s safety. Data gathering requires expressions of what is known now, of
the potential outcomes of the data gathering activity, and the potential states of
knowledge subsequent to the acquisition of the data.

Sensitivity, uncertainty, and decision analyses can be used together to improve the
understanding and performance of a system. An application of these techniques has
been made to the Waste Isolation Pilot Plant (WIPP), a nuclear waste repository in the
Southwest United States. The goal of this application is to provide a prioritization for
expenditures on research activities and design modifications. The decision maker (US
Department of Energy) is provided with measures of cost, time, and the likelihood of
successful licensing for various portfolios of research activities and design
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modifications.
Risk Analysis and Performance Assessment

Central to this discussion is a model of the system under study. Sensitivity and
uncertainty analyses assume the existence of such of a model. This is not true in
decision analysis where the process often generates a "requisite” model that may
contain much less detail than the corresponding systems model. It will be assumed
that a computer implemented system model exists, however, and that the decision
analysis exercises this model in a coordinated manner to address particular decisions.

The systems model is exercised by selecting inputs. For both uncertainty and decision
analyses, these inputs are selected according to probability distributions that reflect
the uncertainty in the input. Most often, this uncertainty is attributable to a lack of
knowledge about a parameter that could, at least conceptually be known with certainty.
It may also be, however, that natural variation makes the parameter essentially
unknowable. In contrast, sensitivity analysis can be performed without reference to
any probability distributions or it can be performed on the parameters of such
distributions.

When a model is a exercised in a probabilistic fashion, the output is a random vector
or perhaps a set of random functions. One representation of model output involves
the separation of uncertainties attributable to knowledge uncertainties from uncertainty
that is natural or nonreducible. This type of representation has played an important
role in a number of US risk assessments including that for the WIPP.

Exercising the model produces a sample of values from the uncertainty distribution of
the model output. There are various ways in which this output can be compared to
criteria. For example, the criteria may be stated in terms of a mean value.
Conversely, the criteria may be in probabilistic form. The US criteria for transuranic
waste disposal calls for no more than a one in ten chance of exceeding one
standardized unit of release to the environment. This criteria requires, then, that the
model output is in the form of a CDF or that a CDF can be created from the output.

Decision analysis

While the end result of decision analysis is the recommendation of an optimal strategy,
the recommendation itself is subject to sensitivity analysis. This is, of course, only
proper since any model based analysis provides only an approximation to the decision
to be addressed. It will be kept in mind, then, that decision analysis does not "make"
decisions, its intent is provide information in a form useful to the decision maker.

Decision analysis for complex systems can be performed by using the decision
analysis paradigm to exercise the systems model rather than manufacturing a decision
structure from the ground up. There are several advantages to such an approach.
First, the systems models are often well understood by the parties involved in the
decision and therefore trusted. Second, the level of effort required to build an
adequate representation of the system exclusively for the decision analysis can be
substantial. Such effort is avoided by adopting the systems model. On the down-side,
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the systems model may be computationally intensive and, because a decision analysis
will require a large number of evaluations, the computational time and cost may be
excessive.

One common form of a decision tree is the two-stage tree with the first stage being
a decision to implement a certain set of information gathering activities and the second
stage being a terminal decision based upon the outcome of the first stage. Two
distinct types of uncertainties are represented in this tree structure. One type of
uncertainty is about the outcomes of the information gathering activities. The other
type of uncertainty relates to the knowledge that one would have given a particular
outcome of the information gathering activity.

A complete decision analysis requires a utility function to measure the goodness of
various outcomes. The utility function may have a vector domain with the elements
being such things as health effects, environmental damage, costs, time, etc. If the
analysis is being done to demonstrate compliance, then an indicator may be of
compliance may then be used as a measure of utility. The expected value of the
indicator then provides a measure of the value of an information gathering strategy.

There are several key components to decision analysis. Central to understanding and
emulating the system is the risk assessment model. The choice of input distributions
is also key. Here the distributions must be expressive of the uncertainties in the
outcomes of the information gathering activities and expressive of the residual
uncertainties conditional on the various potential outcomes of the activity.

The decision analysis produces measures of value for each strategy. In a risk
assessment that is directed at demonstrating compliance, this measure can be the
probability of demonstrating compliance. This probability can then be compared to
cost and time measures to determine an optimal portfolio of activities to undertake.

The WIPP Systems Prioritization Methodology

Recently, an application of decision analysis was made to the WIPP as a decision-
making aide in selecting activities to be conducted prior to a submission of an
application for licensing. The study was conducted in two stages, SPM-1 and SPM-2
(Systems Prioritization Methodology 1 and 2.)

One of the more unusual features of the SPM methodology is the use of baseline
distributions rather than more traditional prior distributions. The baseline distribution
is roughly defined as the least conservative distribution that could be successfully
defended in a court of law given the present state of scientific knowledge. For various
reasons, this choice became troublesome and required refinement and redefinition as
the project proceeded.

One the most difficult activities in implementing SPM was the acquisition of
distributions for experimental outcomes. Scientists and engineers do not seem
accustomed to thinking about the various potential outcomes of their studies. Rather,
they are comfortable in thinking about outcomes as successes and failures -- the
experiment succeeds-and confirms the scientist's beliefs or it fails and does not
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produce defensible results. Some difficulties were also encountered in obtaining
conditional distributions for parameters.

One constraining factor ins both SPM-1 and SPM-2 was the amount of computer time
that was required to evaluate the many combinations of activities and the potential
outcomes of these activities. So that the calculations could be done within cost and
time budgets, a fairly coarse level of refinement was used with respect to the
outcomes of activities. Moreover, a computational strategy was developed that
avoided making large numbers of evaluations with portions of the performance
assessment model that are most expensive to run.
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Many activities in quantitative modelling lead to comparisons of a set A of actions,
designs or alternatives a according to an evaluation function ¥(a,w), which depends on
parameters w. We might be interested in checking the sensitivity of the output of our
analysis to changes in the parameters.

We have been developing a framework to deal with such problems (1). The framework
was developed mainly for decision analytic contexts. Our aim here is to describe it, with
emphasis on recent developments. We shall also describe an application to a radiation
protection problem and explore extensions to more general settings.

1 The basic framework

We start with the typical decision analytic framework. Assume that A is a finite set of
alternatives. The evaluation function is the expected utility which depends on parameters
related to the probability distribution and to the utility function. We assume that there is
some imprecision about these parameters, modelled by constraints w € S. There is also
some initial guess wo, and the alternative maximising ¥(.,wo) is the candidate optimal
alternative. We want to check, however, the impact of w on that optimal alternative.

2 Filtering phase

We consider first a set of filters which help us to detect the alternatives that are worthwhile
retaining in the analysis.

Nondominated alternatives These are alternatives such that there is no other altern-
ative which is better for all possible parameters w € §.

Potentially optimal alternatives These are alternatives that are optimal for some
weES.

Adjacent potentially optimal These are alternatives that share optimality with the
current optimal alternative for some w € S.
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All these alternatives may be discovered via mathematical programming (2). At the end
of this phase we end up with a set of alternatives on which the decision maker should focus
attention. As a byproduct, we also obtain estimates of potential losses of optimality. If
these are not considered too important, we might declare that the problem is solved.

3 Sensitivity Analysis phase

The purpose of this phase is to detect changes in the parameters leading to changes in the
optimal alternative. We use two types of tools.

Distance analysis We use distances to detect parameters closest to wq leading to the
current optimal alternative being outranked by some other alternative. Again we use
mathematical programming to solve this problem (2).

Differential analysis To speed up computations, we do a similar approach based on
linear approximations to the evaluation functions. In more complex settings, we have to
appeal to Fréchet derivatives.

4 Display of results

The information obtained above is very rich and has to be displayed conveniently to convey
all its meaning to the decision maker. Graphs, sensitivity measures and interpretations
are provided (1).

5 Implementation

The framework is embedded naturally in a cycle of modelling, optimisation, sensitivity
analysis until the model is requisite.

The solution of a large number of mathematical programmes is potentially required.
Some of these are nonconvex and global optimisation is necessary to provide reliable
sensitivity information. Consequently, the computational load may be heavy. We have
undertaken a number of implementations of the framework in order to assess its computa-
tional viability via changes to the high-level sensitivity analysis algorithm, to the detailed
algorithms used to solve various subproblems and to the formulation of those subproblems
(3). We also have investigated a coarse-grain parallel approach, using the processor farm
model, in which complete mathematical programming problems are solved on a single
processor (4).

We have concentrated on cases in which ¥(a,w) is either linear or bilinear and in
which S is defined by linear constraints. For such cases general purpose packages have
been constructed which allow distance analyses to be performed in Ly, L, and Lo, metrics.
For more general cases, problem-specific software needs to be written. Our results suggest
that a PC-based sequential implementation is viable for realistic sized linear and bilinear
discrete MCDA models.
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6 A case study in radiation protection

As an illustration of our framework, we discuss its application to a hypothetical radiation
accident. This scenario was explored at a decision conference undertaken on behalf of the
Nordic Cooperation Organisation (5). A number of strategies for medium and long term
protective actions were investigated in terms of six criteria using a multi-attribute value
model.

7 Extensions

We shall describe two possible extensions.

7.1 The continuous case

In many cases, the set of alternatives is continuous. Many of the ideas above can be
extended. For example, the set of nondominated alternatives can be approximated through
simulation. First, draw a sample of alternatives and apply the methods above. Use the
resulting set as an approximation to the nondominated set, perhaps with the aid of some
smoother. This smoother can be used to define stopping rules to decide when to stop
sampling.

7.2 The impliéit function case

In the above, it was implicitly assumed that we had an explicit expression for the evaluation
function. We have dealt with cases in which this does not hold; for example, influence
diagrams.

The case in which the evaluation is obtained with a simulation is also of interest. If
this evaluation is cheap, we may apply the previous framework with optimisation meth-
ods not using derivatives. When the evaluation is expensive, we may obtain a sample
{¥(ai, wi)}y, fit a regression metamodel and appeal to the previous framework.
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Abstract

The financial feasibility of large investment projects (such as investments in gas
transmission and power systems) has many aspects. Usually, this multi-facetted
problem can not be modeled as a single optimization problem; instead the multiple
aspects are modeled separately: demand, supply, prices, investment cost submodels.
Each aspect may require a large, nonlinear submodel. The results per submodel used
in the final evaluation are often limited to one or a few variables, which combine all
the submodel information; for example, the result of the demand model is the sum of
the demand per customer type, each type being modeled separately. The feasibility of
the investment project is then judged by combining the results of the various
submodels for the ‘base case’ values of all model inputs.

The preferred criterion for project evaluation is the expected Net Present Value
E(NPV). However, for the decision makers this certainty information is not sufficient;
they also like to know the financial risk they are taking.

The project’