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Abstract 

The aim of this work is to develop quantitative approaches to manage uncertainty of variables or functions modeled by complex 
systems where both experimental and simulation data are available. We present the case of variables, where in current practices, 
an uncertainty study could be understood as a quantity of interest study of the model output: mean, quantile, threshold 
probability, etc…This situation is very common in engineering, where complex models exist and where the experimental data are 
difficult to obtain. First, we propose a method for model calibration based on experimental and simulation data, then we prove 
the consistency of this calibration procedure. The main tool used here is the empirical processes theory. Our final purpose is to 
incoporate simulated data from a complex model into an estimator (of a quantity of interest) based on experimental data, and then 
to compare the performance of our estimators to the classical estimators based on experimental data only. 
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1. Introduction 

We model a complex phenomenon by a random variable Y R with unknown probability density f , the 
associated probability measure is noted  Q . We assume that we have n experimental data of this phenomenon, 

nYY ,...,1  , considered as a sample of  independent and identically-distributed  realizations of Y . In practice, the 
number of experimental data is limited and it doesn’t provide enough information on the variable Y . To 
overcome this lack of knowledge, we consider a numerical model (for example) which represents the complex 
phenomenon Y . We consider a function  RRRh kd
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method for estimating )(0 h(0 . It amounts to minimizing a criterion ),(, )hM mn built from an objective function 
),( )hM supposed to be minimum in ),( **

o
*h . This criterion depends on experimental and simulated data and 

takes the form:   
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where the functions (.),
m
h (m
h indexed by depend on mXX ,...,1 . We denote by )(, hmnn  the minimum of 

),(, )hM mn  over for a fixed model h. 

In this study, we investigate the consistency of this calibration procedure when n and m go to infinity, and we prove 
it under some conditions in terms of model complexity through entropy measure. An important point is to control 
the following risk excess , we show the inequality: 
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is considered as an estimation error, the second 

Qh
m
h ,1,,sup h
m
h  as a simulation error, and 

hh is defined as the approximation error. 

 
We also obtain results about the effect of the number of experimental data and simulation data on the quantity of 
interest estimation based on both experimental and simulated data. Comparisons are done with the estimation using 
experimental data only.  
These results will be illustrated by some numerical examples. 
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