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Abstract 

Most methods in simulation-optimization assume known environments, whereas this research accounts for uncertain 
environments combining Taguchi’s world view with either regression or Kriging (Gaussian Process) metamodels (response 
surfaces). These metamodels are combined with Non-Linear Mathematical Programming (NLMP) to find a robust optimal 
solution. Varying the constraint values in the NLMP model gives an estimated Pareto frontier. To account for the variability of 
the estimated Pareto frontier, this research uses bootstrapping which gives confidence regions for the robust optimal solution. 
This methodology is illustrated through the Economic Order Quantity (EOQ) inventory-management model, accounting for the 
uncertainties in the demand rate and the cost coefficients. 
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1. Overview 

Most methods in simulation-optimization assume known environments so all relevant parameters (simulation 
inputs) are known. Unfortunately, ignoring the uncertainty in some inputs of the simulation model may lead to a 
suboptimal solution. Robust optimization aims at deriving solutions that are relatively insensitive to perturbations in 
the model parameters.  

In Taguchi’s world view there are decision factors—which are under the control of management—and 
environmental factors—which are uncertain and are not controlled. Taguchi’s work is meant for real-life 
experiments, whereas we consider simulation experiments: this gives us more flexibility, because we can explore 
many values per input and many scenarios (combinations of these values). Taguchi’s statistical techniques have 
been seriously criticized; therefore, we do not use these techniques. To design our simulation study, we adopt a 
Design of Experiments (DOE) that combines (crosses) a Latin Hypercube Design for the environmental factors that 
accounts for their distribution function, and a space-filling design for the decision factors. 
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In our current research, we assume a single output of the simulation model. Because simulation runs are often 
computationally expensive, we approximate the Input/Output (I/O) function of the simulation model through a 
metamodel. Dellino et al. (2009b) integrate the Taguchian worldview and two metamodeling techniques, namely 
regression analysis and Kriging. Dellino et al. (2010) detail regression-based robust optimization, using the EOQ 
model for illustration. Inspired by Myers and Montgomery (1995), they fit a regression metamodel for the 
simulation output, accounting for interactions between decision and environmental factors. Next, they derive one 
regression metamodel for the expected mean of the simulation output and one regression metamodel for this 
output’s standard deviation. The two metamodels are validated through leave-one-out cross-validation. Dellino et al. 
(2009a) replace regression analysis by Kriging; they compare two alternative Kriging approaches. In both 
approaches they fit one Kriging metamodel for the expected mean of the simulation output and one Kriging 
metamodel for its standard deviation. 

To find robust optimal solutions, we formulate a Non-Linear Mathematical Programming (NLMP) problem as 
follows: our goal is to minimize the expected mean of the simulation output (through the corresponding metamodel), 
while keeping its standard deviation below a threshold. After solving this NLMP problem, we change the threshold 
within a given interval—properly chosen to reflect management’s  risk attitude—and solve the optimization problem 
for each value of the threshold. The set of resulting robust solutions estimates the Pareto frontier, trading-off the 
estimated mean and standard deviation of the simulation output. 

The resulting Pareto frontier itself is uncertain: in fact, it has been estimated through simulation outputs 
corresponding to a sample of combinations for the environmental factors. To further analyze this frontier, we use 
bootstrapping. More specifically, we adopt parametric bootstrapping for our regression-based approach and 
distribution-free bootstrapping for our two Kriging-based approaches. In our regression approach we sample the 
regression parameters from a multivariate normal distribution with parameters estimated from the simulation data. 
In our Kriging approaches we resample—with replacement—the observed simulation output data, and recomputed 
the Kriging metamodels. To reduce the resulting sampling error, we repeat this sampling B times (e.g., B = 100). For 
further details on bootstrapping, we refer to Efron and Tibshirani (1993). Based on this bootstrapping, we obtain B 
fitted regression or Kriging metamodels for the expected mean and standard deviation of the simulation output. 
From these B observations we derive confidence intervals (see again Efron and Tibshirani 1993)., which quantify 
the variability of the metamodels. Next, we may compute confidence regions for each robust optimal solution 
belonging to the estimated Pareto frontier. Such a measure of variability can help management to choose a robust 
solution, not only accounting for its risk attitude but also for possible differences between estimated and actual 
values of the mean and standard deviation of the simulation output. 

We test our new methodology through a popular inventory model, namely the EOQ model. We, however, 
introduce a robust formulation where the demand rate and the cost coefficients are uncertain. This example enables 
us to verify the performance of our heuristic because we can derive the true expected cost and its standard deviation. 
Furthermore, our results show the difference between our robust solution and the classic solution which ignores 
uncertainties in the environmental factors. Finally, the EOQ example gives encouraging results, which suggest the 
applicability of the methodology to more complex models. 
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